DiagnoProt: a tool for discovery of new molecules by mass spectrometry

Around 75% of all mass spectra remain unidentified by widely adopted proteomic strategies. We present DiagnoProt, an integrated computational environment that can efficiently cluster millions of spectra and use machine learning to shortlist high-quality unidentified mass spectra that are discriminat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2017-06, Vol.33 (12), p.1883-1885
Hauptverfasser: Silva, André R F, Lima, Diogo B, Leyva, Alejandro, Duran, Rosario, Batthyany, Carlos, Aquino, Priscila F, Leal, Juliana C, Rodriguez, Jimmy E, Domont, Gilberto B, Santos, Marlon D M, Chamot-Rooke, Julia, Barbosa, Valmir C, Carvalho, Paulo C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Around 75% of all mass spectra remain unidentified by widely adopted proteomic strategies. We present DiagnoProt, an integrated computational environment that can efficiently cluster millions of spectra and use machine learning to shortlist high-quality unidentified mass spectra that are discriminative of different biological conditions. We exemplify the use of DiagnoProt by shortlisting 4366 high-quality unidentified tandem mass spectra that are discriminative of different types of the Aspergillus fungus. DiagnoProt, a demonstration video and a user tutorial are available at http://patternlabforproteomics.org/diagnoprot . andrerfsilva@gmail.com or paulo@pcarvalho.com. Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/btx093