Ypk1 and Ypk2 kinases maintain Rho1 at the plasma membrane by flippase-dependent lipid remodeling after membrane stresses
The plasma membrane (PM) is frequently challenged by mechanical stresses. In budding yeast, TORC2-Ypk1/Ypk2 kinase cascade plays a crucial role in PM stress responses by reorganizing the actin cytoskeleton via Rho1 GTPase. However, the molecular mechanism by which TORC2-Ypk1/Ypk2 regulates Rho1 is n...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2017-03, Vol.130 (6), p.1169-1178 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The plasma membrane (PM) is frequently challenged by mechanical stresses. In budding yeast, TORC2-Ypk1/Ypk2 kinase cascade plays a crucial role in PM stress responses by reorganizing the actin cytoskeleton via Rho1 GTPase. However, the molecular mechanism by which TORC2-Ypk1/Ypk2 regulates Rho1 is not well defined. Here, we found that Ypk1/Ypk2 maintain PM localization of Rho1 under PM stress via spatial reorganization of the lipids including phosphatidylserine. Genetic evidence suggests that this process is mediated by the Lem3-containing lipid flippase. We propose that lipid remodeling mediated by the TORC2-Ypk1/Ypk2-Lem3 axis is a backup mechanism for PM anchoring of Rho1 after PM stress-induced acute degradation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P
], which is responsible for Rho1 localization under normal conditions. Since all the signaling molecules studied here are conserved in higher eukaryotes, our findings might represent a general mechanism to cope with PM stress. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.198382 |