Infodemiology of systemic lupus erythematous using Google Trends
Objective People affected by chronic rheumatic conditions, such as systemic lupus erythematosus (SLE), frequently rely on the Internet and search engines to look for terms related to their disease and its possible causes, symptoms and treatments. ‘Infodemiology’ and ‘infoveillance’ are two recent te...
Gespeichert in:
Veröffentlicht in: | Lupus 2017-07, Vol.26 (8), p.886-889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
People affected by chronic rheumatic conditions, such as systemic lupus erythematosus (SLE), frequently rely on the Internet and search engines to look for terms related to their disease and its possible causes, symptoms and treatments. ‘Infodemiology’ and ‘infoveillance’ are two recent terms created to describe a new developing approach for public health, based on Big Data monitoring and data mining. In this study, we aim to investigate trends of Internet research linked to SLE and symptoms associated with the disease, applying a Big Data monitoring approach.
Methods
We analysed the large amount of data generated by Google Trends, considering ‘lupus’, ‘relapse’ and ‘fatigue’ in a 10-year web-based research. Google Trends automatically normalized data for the overall number of searches, and presented them as relative search volumes, in order to compare variations of different search terms across regions and periods. The Menn–Kendall test was used to evaluate the overall seasonal trend of each search term and possible correlation between search terms.
Results
We observed a seasonality for Google search volumes for lupus-related terms. In the Northern hemisphere, relative search volumes for ‘lupus’ were correlated with ‘relapse’ (τ = 0.85; p = 0.019) and with fatigue (τ = 0.82; p = 0.003), whereas in the Southern hemisphere we observed a significant correlation between ‘fatigue’ and ‘relapse’ (τ = 0.85; p = 0.018). Similarly, a significant correlation between ‘fatigue’ and ‘relapse’ (τ = 0.70; p |
---|---|
ISSN: | 0961-2033 1477-0962 |
DOI: | 10.1177/0961203317691372 |