ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis

Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2017-03, Vol.213 (4), p.1667-1681
Hauptverfasser: Yao, Yuan, He, Run Jun, Xie, Qiao Li, Zhao, Xian hai, Deng, Xiao mei, He, Jun bo, Song, Lili, He, Jun, Marchant, Alan, Chen, Xiao‐Yang, Wu, Ai‐Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1681
container_issue 4
container_start_page 1667
container_title The New phytologist
container_volume 213
creator Yao, Yuan
He, Run Jun
Xie, Qiao Li
Zhao, Xian hai
Deng, Xiao mei
He, Jun bo
Song, Lili
He, Jun
Marchant, Alan
Chen, Xiao‐Yang
Wu, Ai‐Min
description Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway. We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.
doi_str_mv 10.1111/nph.14278
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1865527450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90000517</jstor_id><sourcerecordid>90000517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</originalsourceid><addsrcrecordid>eNp1kk9v0zAYhy0EYmVw4AOALHFpD9lsx86fY9WlFKlqp65IcIqc5M3qKrEzOxH0w_HdcNZtByR8sQ_P7_Er_4zQR0quqF_XujtcUc7i5BWaUB6lQULD-DWaEMKSIOLRjwv0zrkjISQVEXuLLlhCIx6GfIL-ZPvVz3W2yfAuu7vdbu4yvJwv9tsdjjmeZrtlzGe4a-TJYakxOAe6V7LB1jSAlcal0b0_N0rfY4ktuE5Z2Rt7wsVgXY_Nb1VJB_hgWtOYe3yDp7vCHG5mQQUd6MrrcAvlQWrl2lE4Koz2id7gStU12BFxvR3vdiMxt7JQlemccu_Rm1o2Dj487Zfo-zLbL1bBevv122K-DkpOSRKEhNI0JYynMWd1CVHKwD8Tr6iIeJxIJniYcgFJGBPBUprUUBUijCSXVQhShJdoevZ21jwM4Pq8Va6EppEazOBymkRCsJgL4tEv_6BHM1jtp3ukaEIFTT01O1OlNc5ZqPPOqlbaU05JPnaa-07zx049-_nJOBQtVC_kc4keuD4Dv1QDp_-b8s3t6ln56Zw4Ot_VSyL1P4QIGod_AZtFst4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865181519</pqid></control><display><type>article</type><title>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yao, Yuan ; He, Run Jun ; Xie, Qiao Li ; Zhao, Xian hai ; Deng, Xiao mei ; He, Jun bo ; Song, Lili ; He, Jun ; Marchant, Alan ; Chen, Xiao‐Yang ; Wu, Ai‐Min</creator><creatorcontrib>Yao, Yuan ; He, Run Jun ; Xie, Qiao Li ; Zhao, Xian hai ; Deng, Xiao mei ; He, Jun bo ; Song, Lili ; He, Jun ; Marchant, Alan ; Chen, Xiao‐Yang ; Wu, Ai‐Min</creatorcontrib><description>Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway. We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14278</identifier><identifier>PMID: 28164334</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>abiotic stress ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis - radiation effects ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Base Sequence ; Droughts ; ethylene response factor (ERF) ; Gene Expression Regulation, Plant - radiation effects ; Genes, Dominant ; Light ; Models, Biological ; Mutation - genetics ; NADPH Oxidases - metabolism ; Phenotype ; Pigmentation - radiation effects ; Plant Leaves - physiology ; Plant Leaves - radiation effects ; Protein Binding - radiation effects ; reactive oxygen species (ROS) ; Reactive Oxygen Species - metabolism ; Respiratory Burst - radiation effects ; respiratory burst oxidase homolog (Rboh) ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; signal pathway ; Stress, Physiological - genetics ; Stress, Physiological - radiation effects ; transactivation ; Transcriptional Activation - genetics</subject><ispartof>The New phytologist, 2017-03, Vol.213 (4), p.1667-1681</ispartof><rights>2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</citedby><cites>FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90000517$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90000517$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28164334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>He, Run Jun</creatorcontrib><creatorcontrib>Xie, Qiao Li</creatorcontrib><creatorcontrib>Zhao, Xian hai</creatorcontrib><creatorcontrib>Deng, Xiao mei</creatorcontrib><creatorcontrib>He, Jun bo</creatorcontrib><creatorcontrib>Song, Lili</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Marchant, Alan</creatorcontrib><creatorcontrib>Chen, Xiao‐Yang</creatorcontrib><creatorcontrib>Wu, Ai‐Min</creatorcontrib><title>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway. We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.</description><subject>abiotic stress</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>Droughts</subject><subject>ethylene response factor (ERF)</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes, Dominant</subject><subject>Light</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Phenotype</subject><subject>Pigmentation - radiation effects</subject><subject>Plant Leaves - physiology</subject><subject>Plant Leaves - radiation effects</subject><subject>Protein Binding - radiation effects</subject><subject>reactive oxygen species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory Burst - radiation effects</subject><subject>respiratory burst oxidase homolog (Rboh)</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>signal pathway</subject><subject>Stress, Physiological - genetics</subject><subject>Stress, Physiological - radiation effects</subject><subject>transactivation</subject><subject>Transcriptional Activation - genetics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kk9v0zAYhy0EYmVw4AOALHFpD9lsx86fY9WlFKlqp65IcIqc5M3qKrEzOxH0w_HdcNZtByR8sQ_P7_Er_4zQR0quqF_XujtcUc7i5BWaUB6lQULD-DWaEMKSIOLRjwv0zrkjISQVEXuLLlhCIx6GfIL-ZPvVz3W2yfAuu7vdbu4yvJwv9tsdjjmeZrtlzGe4a-TJYakxOAe6V7LB1jSAlcal0b0_N0rfY4ktuE5Z2Rt7wsVgXY_Nb1VJB_hgWtOYe3yDp7vCHG5mQQUd6MrrcAvlQWrl2lE4Koz2id7gStU12BFxvR3vdiMxt7JQlemccu_Rm1o2Dj487Zfo-zLbL1bBevv122K-DkpOSRKEhNI0JYynMWd1CVHKwD8Tr6iIeJxIJniYcgFJGBPBUprUUBUijCSXVQhShJdoevZ21jwM4Pq8Va6EppEazOBymkRCsJgL4tEv_6BHM1jtp3ukaEIFTT01O1OlNc5ZqPPOqlbaU05JPnaa-07zx049-_nJOBQtVC_kc4keuD4Dv1QDp_-b8s3t6ln56Zw4Ot_VSyL1P4QIGod_AZtFst4</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Yao, Yuan</creator><creator>He, Run Jun</creator><creator>Xie, Qiao Li</creator><creator>Zhao, Xian hai</creator><creator>Deng, Xiao mei</creator><creator>He, Jun bo</creator><creator>Song, Lili</creator><creator>He, Jun</creator><creator>Marchant, Alan</creator><creator>Chen, Xiao‐Yang</creator><creator>Wu, Ai‐Min</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170301</creationdate><title>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</title><author>Yao, Yuan ; He, Run Jun ; Xie, Qiao Li ; Zhao, Xian hai ; Deng, Xiao mei ; He, Jun bo ; Song, Lili ; He, Jun ; Marchant, Alan ; Chen, Xiao‐Yang ; Wu, Ai‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>abiotic stress</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>Droughts</topic><topic>ethylene response factor (ERF)</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes, Dominant</topic><topic>Light</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Phenotype</topic><topic>Pigmentation - radiation effects</topic><topic>Plant Leaves - physiology</topic><topic>Plant Leaves - radiation effects</topic><topic>Protein Binding - radiation effects</topic><topic>reactive oxygen species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory Burst - radiation effects</topic><topic>respiratory burst oxidase homolog (Rboh)</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>signal pathway</topic><topic>Stress, Physiological - genetics</topic><topic>Stress, Physiological - radiation effects</topic><topic>transactivation</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>He, Run Jun</creatorcontrib><creatorcontrib>Xie, Qiao Li</creatorcontrib><creatorcontrib>Zhao, Xian hai</creatorcontrib><creatorcontrib>Deng, Xiao mei</creatorcontrib><creatorcontrib>He, Jun bo</creatorcontrib><creatorcontrib>Song, Lili</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Marchant, Alan</creatorcontrib><creatorcontrib>Chen, Xiao‐Yang</creatorcontrib><creatorcontrib>Wu, Ai‐Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yuan</au><au>He, Run Jun</au><au>Xie, Qiao Li</au><au>Zhao, Xian hai</au><au>Deng, Xiao mei</au><au>He, Jun bo</au><au>Song, Lili</au><au>He, Jun</au><au>Marchant, Alan</au><au>Chen, Xiao‐Yang</au><au>Wu, Ai‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>213</volume><issue>4</issue><spage>1667</spage><epage>1681</epage><pages>1667-1681</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway. We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28164334</pmid><doi>10.1111/nph.14278</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2017-03, Vol.213 (4), p.1667-1681
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1865527450
source Jstor Complete Legacy; Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects abiotic stress
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis - radiation effects
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Base Sequence
Droughts
ethylene response factor (ERF)
Gene Expression Regulation, Plant - radiation effects
Genes, Dominant
Light
Models, Biological
Mutation - genetics
NADPH Oxidases - metabolism
Phenotype
Pigmentation - radiation effects
Plant Leaves - physiology
Plant Leaves - radiation effects
Protein Binding - radiation effects
reactive oxygen species (ROS)
Reactive Oxygen Species - metabolism
Respiratory Burst - radiation effects
respiratory burst oxidase homolog (Rboh)
RNA, Messenger - genetics
RNA, Messenger - metabolism
signal pathway
Stress, Physiological - genetics
Stress, Physiological - radiation effects
transactivation
Transcriptional Activation - genetics
title ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ETHYLENE%20RESPONSE%20FACTOR%2074%20(ERF74)%20plays%20an%20essential%20role%20in%20controlling%20a%20respiratory%20burst%20oxidase%20homolog%20D%20(RbohD)-dependent%20mechanism%20in%20response%20to%20different%20stresses%20in%20Arabidopsis&rft.jtitle=The%20New%20phytologist&rft.au=Yao,%20Yuan&rft.date=2017-03-01&rft.volume=213&rft.issue=4&rft.spage=1667&rft.epage=1681&rft.pages=1667-1681&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14278&rft_dat=%3Cjstor_proqu%3E90000517%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865181519&rft_id=info:pmid/28164334&rft_jstor_id=90000517&rfr_iscdi=true