ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis
Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2017-03, Vol.213 (4), p.1667-1681 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1681 |
---|---|
container_issue | 4 |
container_start_page | 1667 |
container_title | The New phytologist |
container_volume | 213 |
creator | Yao, Yuan He, Run Jun Xie, Qiao Li Zhao, Xian hai Deng, Xiao mei He, Jun bo Song, Lili He, Jun Marchant, Alan Chen, Xiao‐Yang Wu, Ai‐Min |
description | Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear.
Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays.
35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway.
We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis. |
doi_str_mv | 10.1111/nph.14278 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1865527450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90000517</jstor_id><sourcerecordid>90000517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</originalsourceid><addsrcrecordid>eNp1kk9v0zAYhy0EYmVw4AOALHFpD9lsx86fY9WlFKlqp65IcIqc5M3qKrEzOxH0w_HdcNZtByR8sQ_P7_Er_4zQR0quqF_XujtcUc7i5BWaUB6lQULD-DWaEMKSIOLRjwv0zrkjISQVEXuLLlhCIx6GfIL-ZPvVz3W2yfAuu7vdbu4yvJwv9tsdjjmeZrtlzGe4a-TJYakxOAe6V7LB1jSAlcal0b0_N0rfY4ktuE5Z2Rt7wsVgXY_Nb1VJB_hgWtOYe3yDp7vCHG5mQQUd6MrrcAvlQWrl2lE4Koz2id7gStU12BFxvR3vdiMxt7JQlemccu_Rm1o2Dj487Zfo-zLbL1bBevv122K-DkpOSRKEhNI0JYynMWd1CVHKwD8Tr6iIeJxIJniYcgFJGBPBUprUUBUijCSXVQhShJdoevZ21jwM4Pq8Va6EppEazOBymkRCsJgL4tEv_6BHM1jtp3ukaEIFTT01O1OlNc5ZqPPOqlbaU05JPnaa-07zx049-_nJOBQtVC_kc4keuD4Dv1QDp_-b8s3t6ln56Zw4Ot_VSyL1P4QIGod_AZtFst4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865181519</pqid></control><display><type>article</type><title>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yao, Yuan ; He, Run Jun ; Xie, Qiao Li ; Zhao, Xian hai ; Deng, Xiao mei ; He, Jun bo ; Song, Lili ; He, Jun ; Marchant, Alan ; Chen, Xiao‐Yang ; Wu, Ai‐Min</creator><creatorcontrib>Yao, Yuan ; He, Run Jun ; Xie, Qiao Li ; Zhao, Xian hai ; Deng, Xiao mei ; He, Jun bo ; Song, Lili ; He, Jun ; Marchant, Alan ; Chen, Xiao‐Yang ; Wu, Ai‐Min</creatorcontrib><description>Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear.
Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays.
35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway.
We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14278</identifier><identifier>PMID: 28164334</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>abiotic stress ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis - radiation effects ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Base Sequence ; Droughts ; ethylene response factor (ERF) ; Gene Expression Regulation, Plant - radiation effects ; Genes, Dominant ; Light ; Models, Biological ; Mutation - genetics ; NADPH Oxidases - metabolism ; Phenotype ; Pigmentation - radiation effects ; Plant Leaves - physiology ; Plant Leaves - radiation effects ; Protein Binding - radiation effects ; reactive oxygen species (ROS) ; Reactive Oxygen Species - metabolism ; Respiratory Burst - radiation effects ; respiratory burst oxidase homolog (Rboh) ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; signal pathway ; Stress, Physiological - genetics ; Stress, Physiological - radiation effects ; transactivation ; Transcriptional Activation - genetics</subject><ispartof>The New phytologist, 2017-03, Vol.213 (4), p.1667-1681</ispartof><rights>2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</citedby><cites>FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90000517$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90000517$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28164334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>He, Run Jun</creatorcontrib><creatorcontrib>Xie, Qiao Li</creatorcontrib><creatorcontrib>Zhao, Xian hai</creatorcontrib><creatorcontrib>Deng, Xiao mei</creatorcontrib><creatorcontrib>He, Jun bo</creatorcontrib><creatorcontrib>Song, Lili</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Marchant, Alan</creatorcontrib><creatorcontrib>Chen, Xiao‐Yang</creatorcontrib><creatorcontrib>Wu, Ai‐Min</creatorcontrib><title>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear.
Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays.
35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway.
We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.</description><subject>abiotic stress</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>Droughts</subject><subject>ethylene response factor (ERF)</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes, Dominant</subject><subject>Light</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Phenotype</subject><subject>Pigmentation - radiation effects</subject><subject>Plant Leaves - physiology</subject><subject>Plant Leaves - radiation effects</subject><subject>Protein Binding - radiation effects</subject><subject>reactive oxygen species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory Burst - radiation effects</subject><subject>respiratory burst oxidase homolog (Rboh)</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>signal pathway</subject><subject>Stress, Physiological - genetics</subject><subject>Stress, Physiological - radiation effects</subject><subject>transactivation</subject><subject>Transcriptional Activation - genetics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kk9v0zAYhy0EYmVw4AOALHFpD9lsx86fY9WlFKlqp65IcIqc5M3qKrEzOxH0w_HdcNZtByR8sQ_P7_Er_4zQR0quqF_XujtcUc7i5BWaUB6lQULD-DWaEMKSIOLRjwv0zrkjISQVEXuLLlhCIx6GfIL-ZPvVz3W2yfAuu7vdbu4yvJwv9tsdjjmeZrtlzGe4a-TJYakxOAe6V7LB1jSAlcal0b0_N0rfY4ktuE5Z2Rt7wsVgXY_Nb1VJB_hgWtOYe3yDp7vCHG5mQQUd6MrrcAvlQWrl2lE4Koz2id7gStU12BFxvR3vdiMxt7JQlemccu_Rm1o2Dj487Zfo-zLbL1bBevv122K-DkpOSRKEhNI0JYynMWd1CVHKwD8Tr6iIeJxIJniYcgFJGBPBUprUUBUijCSXVQhShJdoevZ21jwM4Pq8Va6EppEazOBymkRCsJgL4tEv_6BHM1jtp3ukaEIFTT01O1OlNc5ZqPPOqlbaU05JPnaa-07zx049-_nJOBQtVC_kc4keuD4Dv1QDp_-b8s3t6ln56Zw4Ot_VSyL1P4QIGod_AZtFst4</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Yao, Yuan</creator><creator>He, Run Jun</creator><creator>Xie, Qiao Li</creator><creator>Zhao, Xian hai</creator><creator>Deng, Xiao mei</creator><creator>He, Jun bo</creator><creator>Song, Lili</creator><creator>He, Jun</creator><creator>Marchant, Alan</creator><creator>Chen, Xiao‐Yang</creator><creator>Wu, Ai‐Min</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170301</creationdate><title>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</title><author>Yao, Yuan ; He, Run Jun ; Xie, Qiao Li ; Zhao, Xian hai ; Deng, Xiao mei ; He, Jun bo ; Song, Lili ; He, Jun ; Marchant, Alan ; Chen, Xiao‐Yang ; Wu, Ai‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-3011990249742fce692e4694d156478a2543945e837052918fedb536a4ad3ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>abiotic stress</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>Droughts</topic><topic>ethylene response factor (ERF)</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes, Dominant</topic><topic>Light</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Phenotype</topic><topic>Pigmentation - radiation effects</topic><topic>Plant Leaves - physiology</topic><topic>Plant Leaves - radiation effects</topic><topic>Protein Binding - radiation effects</topic><topic>reactive oxygen species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory Burst - radiation effects</topic><topic>respiratory burst oxidase homolog (Rboh)</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>signal pathway</topic><topic>Stress, Physiological - genetics</topic><topic>Stress, Physiological - radiation effects</topic><topic>transactivation</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>He, Run Jun</creatorcontrib><creatorcontrib>Xie, Qiao Li</creatorcontrib><creatorcontrib>Zhao, Xian hai</creatorcontrib><creatorcontrib>Deng, Xiao mei</creatorcontrib><creatorcontrib>He, Jun bo</creatorcontrib><creatorcontrib>Song, Lili</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Marchant, Alan</creatorcontrib><creatorcontrib>Chen, Xiao‐Yang</creatorcontrib><creatorcontrib>Wu, Ai‐Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yuan</au><au>He, Run Jun</au><au>Xie, Qiao Li</au><au>Zhao, Xian hai</au><au>Deng, Xiao mei</au><au>He, Jun bo</au><au>Song, Lili</au><au>He, Jun</au><au>Marchant, Alan</au><au>Chen, Xiao‐Yang</au><au>Wu, Ai‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>213</volume><issue>4</issue><spage>1667</spage><epage>1681</epage><pages>1667-1681</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear.
Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays.
35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway.
We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28164334</pmid><doi>10.1111/nph.14278</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2017-03, Vol.213 (4), p.1667-1681 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1865527450 |
source | Jstor Complete Legacy; Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | abiotic stress Arabidopsis - genetics Arabidopsis - physiology Arabidopsis - radiation effects Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Base Sequence Droughts ethylene response factor (ERF) Gene Expression Regulation, Plant - radiation effects Genes, Dominant Light Models, Biological Mutation - genetics NADPH Oxidases - metabolism Phenotype Pigmentation - radiation effects Plant Leaves - physiology Plant Leaves - radiation effects Protein Binding - radiation effects reactive oxygen species (ROS) Reactive Oxygen Species - metabolism Respiratory Burst - radiation effects respiratory burst oxidase homolog (Rboh) RNA, Messenger - genetics RNA, Messenger - metabolism signal pathway Stress, Physiological - genetics Stress, Physiological - radiation effects transactivation Transcriptional Activation - genetics |
title | ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ETHYLENE%20RESPONSE%20FACTOR%2074%20(ERF74)%20plays%20an%20essential%20role%20in%20controlling%20a%20respiratory%20burst%20oxidase%20homolog%20D%20(RbohD)-dependent%20mechanism%20in%20response%20to%20different%20stresses%20in%20Arabidopsis&rft.jtitle=The%20New%20phytologist&rft.au=Yao,%20Yuan&rft.date=2017-03-01&rft.volume=213&rft.issue=4&rft.spage=1667&rft.epage=1681&rft.pages=1667-1681&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14278&rft_dat=%3Cjstor_proqu%3E90000517%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865181519&rft_id=info:pmid/28164334&rft_jstor_id=90000517&rfr_iscdi=true |