ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis

Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2017-03, Vol.213 (4), p.1667-1681
Hauptverfasser: Yao, Yuan, He, Run Jun, Xie, Qiao Li, Zhao, Xian hai, Deng, Xiao mei, He, Jun bo, Song, Lili, He, Jun, Marchant, Alan, Chen, Xiao‐Yang, Wu, Ai‐Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74–RbohD–ROS signal pathway. We propose a pathway that involves ERF74 acting as an on–off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2O2) homeostasis in Arabidopsis.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.14278