Computational Exploration of a Two-Spool High Bypass Turbofan Engine's Component Deterioration Effects on Engine Performance
Aircraft engines are exposed to degradation due to several factors such as environmental air pollution, fuel content and ageing or degradation of engine’s components, which are experienced within specified time. While the turbofan in operation, its components deteriorate and consequently affect its...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-10, Vol.629 (AEROTECH V: Progressive Aerospace Research), p.104-108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aircraft engines are exposed to degradation due to several factors such as environmental air pollution, fuel content and ageing or degradation of engine’s components, which are experienced within specified time. While the turbofan in operation, its components deteriorate and consequently affect its performance. This study is aimed to computationally investigate the effect of components degradation on engine performance. A high bypass turbofan engine operated at cruise is selected for this evaluation and the simulation was performed using the Gas Turbine Simulation Program (GSP). The affected components considered are turbines and compressors with deterioration rate ranging from 0% to 5%. The effect of selected deterioration rate on engine thrust and thrust specific fuel consumption (TSFC) is studied. Results obtained show an agreement with literature where reduction in engine thrust and TSFC are observed. Turbine’s fouling has been found to be more severe than erosion in terms of power and efficiency losses. However, in terms of the overall performance, the erosion effect is more severe than fouling. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.629.104 |