Investigation into Air Interception Guidance Algorithms for Autonomous Aerial Hard Docking of Dissimilar Platforms
Autonomous aerial hard docking is the process where an aircraft approaches and forms a rigid connection with another aircraft. After the docking process is complete, it is not necessary for the lift and propulsion system of the docked aircraft to be operating. Docking allows the larger aircraft to c...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-10, Vol.629 (AEROTECH V: Progressive Aerospace Research), p.214-218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autonomous aerial hard docking is the process where an aircraft approaches and forms a rigid connection with another aircraft. After the docking process is complete, it is not necessary for the lift and propulsion system of the docked aircraft to be operating. Docking allows the larger aircraft to carry the small aircraft outside its airframe, thereby extending the range of endurance of the smaller aircraft. In this paper, we investigate specific scenario where docking occurs between a rotary wing aircraft and a fixed wing aircraft. To perform the above procedure, a guidance system on each platform has to ensure interception while satisfying the primary interception condition of velocity vector co-linearity at the moment of intercept of the two trajectories or flight paths. Pursuit guidance and proportional navigation were assessed as candidates for further development for the terminal docking phase. Since the platforms are in quasi-perfect knowledge of each other, the pursuer evader scenario is replaced by the pursuer-pursuer scenario. The novelty of this work lies in the formulation of terminal constraints, as well as the findings obtained. This paper concludes that contrary to the missile guidance scenario, pursuit based guidance laws provide superior baseline laws from which AAHD guidance and navigation laws can be developed. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.629.214 |