Optimization of Multiple Performances for EDM in Gas Media Using Grey Relational Analysis
The aim of this investigation is to optimize the multiple performance characteristics of electrical discharge machining (EDM) for SKD 61 tool steel in gas media using grey relational analysis. The three most important machining characteristics namely material removal rate (MRR), electrode wear rate...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-08, Vol.620 (Industrial Engineering and Applied Research), p.173-178 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this investigation is to optimize the multiple performance characteristics of electrical discharge machining (EDM) for SKD 61 tool steel in gas media using grey relational analysis. The three most important machining characteristics namely material removal rate (MRR), electrode wear rate (EWR), and surface roughness (SR) were considered as the measures of the performance characteristics. A series of experiments were conducted according to an L18 orthogonal array based on the Taguchi experimental design method. The observed data obtained from the experiments were evaluated to determine the optimization of machining parameters correlated with multiple performance characteristics through grey relational analysis. Moreover, analysis of variance (ANOVA) was conducted to explore the significant machining parameters crucially affecting the multiple performance characteristics. In addition, the optimal combination levels of machining parameters were also determined from the response graph of grey relational grades for each level of machining parameter. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.620.173 |