Volumetric coupling approaches for multiphysics simulations on non-matching meshes

Summary In finite element analysis of volume coupled multiphysics, different meshes for the involved physical fields are often highly desirable in terms of solution accuracy and computational costs. We present a general methodology for volumetric coupling of different meshes within a monolithic solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2016-12, Vol.108 (12), p.1550-1576
Hauptverfasser: Farah, P., Vuong, A.-T., Wall, W.A., Popp, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary In finite element analysis of volume coupled multiphysics, different meshes for the involved physical fields are often highly desirable in terms of solution accuracy and computational costs. We present a general methodology for volumetric coupling of different meshes within a monolithic solution scheme. A straightforward collocation approach is compared to a mortar‐based method for nodal information transfer. For the latter, dual shape functions based on the biorthogonality concept are used to build the projection matrices, thus further reducing the evaluation costs. We give a detailed explanation of the integration scheme and the construction of dual shape functions for general first‐order and second‐order Langrangian finite elements within the mortar method, as well as an analysis of the conservation properties of the projection operators. Moreover, possible incompatibilities due to different geometric approximations of curved boundaries are discussed. Numerical examples demonstrate the flexibility of the presented mortar approach for arbitrary finite element combinations in two and three dimensions and its applicability to different multiphysics coupling scenarios. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.5285