Reduced Recombination in High Efficiency Molecular Nematic Liquid Crystalline: Fullerene Solar Cells

Bimolecular recombination in bulk heterojunction organic solar cells is the process by which nongeminate photogenerated free carriers encounter each other, and combine to form a charge transfer (CT) state which subsequently relaxes to the ground state. It is governed by the diffusion of the slower a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2016-11, Vol.6 (22), p.np-n/a
Hauptverfasser: Armin, Ardalan, Subbiah, Jegadesan, Stolterfoht, Martin, Shoaee, Safa, Xiao, Zeyun, Lu, Shirong, Jones, David J., Meredith, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bimolecular recombination in bulk heterojunction organic solar cells is the process by which nongeminate photogenerated free carriers encounter each other, and combine to form a charge transfer (CT) state which subsequently relaxes to the ground state. It is governed by the diffusion of the slower and faster carriers toward the electron donor–acceptor interface. In an increasing number of systems, the recombination rate constant is measured to be lower than that predicted by Langevin's model for relative Brownian motion and the capture of opposite charges. This study investigates the dynamics of charge generation, transport, and recombination in a nematic liquid crystalline donor:fullerene acceptor system that gives solar cells with initial power conversion efficiencies of >9.5%. Unusually, and advantageously from a manufacturing perspective, these efficiencies are maintained in junctions thicker than 300 nm. Despite finding imbalanced and moderate carrier mobilities in this blend, strongly suppressed bimolecular recombination is observed, which is ≈150 times less than predicted by Langevin theory, or indeed, more recent and advanced models that take into account the domain size and the spatial separation of electrons and holes. The suppressed bimolecular recombination arises from the fact that ground‐state decay of the CT state is significantly slower than dissociation. A detailed study of bimolecular recombination in a high efficiency organic solar cell, comprised of a liquid crystalline donor and PC71BM, is presented. Using multiple techniques, it is shown that the bimolecular recombination is nearly 150 times suppressed with respect to that predicted by Langevin theory. This reduction is attributed to an equilibrium between charge transfer states and free charges.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201600939