Formulating Low-Energy Cement Products

AbstractThe study examined several formulations that may serve as a green substitute for traditional portland cement. The primary objective of the project was to produce a durable, low-energy cementitious material from flue gas desulfurization (FGD) gypsum that was converted to hemihydrate. The stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials in civil engineering 2012-09, Vol.24 (9), p.1125-1131
Hauptverfasser: Rust, David, Rathbone, Robert, Mahboub, Kamyar C, Robl, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractThe study examined several formulations that may serve as a green substitute for traditional portland cement. The primary objective of the project was to produce a durable, low-energy cementitious material from flue gas desulfurization (FGD) gypsum that was converted to hemihydrate. The study also included spent ash from circulating fluidized bed combustion (CFBC), and Class F fly ash. Hemihydrate would give the by-product cement early strength development, and the spent-bed/ultrafine ash blend would provide the by-product cement with long-term strength (gaining slowly at first) and decrease solublity. A spent-bed/ultrafine ash ratio of 40/60 produced the best compressive-strength results of the preliminary clinkerless cement blends produced in the study. The expansion of these clinkerless cements was caused by the formation of ettringite shown by X-ray diffraction (XRD). The system stopped expanding when calcium hydroxide was largely consumed. Substituting 50% of the clinkerless cement blends with hemihydrate increased short-term compressive strength 200% and reduced longer-term expansion up to 90%, enabling the production of low-energy 100% by-product cement.
ISSN:0899-1561
1943-5533
DOI:10.1061/(ASCE)MT.1943-5533.0000456