Bounds for pairs in judicious partitioning of graphs

In 2002, Bollobás and Scott posed the following problem: for an integer k≥2 and a graph G of m edges, what is the smallest f(k, m) such that V(G) can be partitioned into V 1,…,Vk in which e(Vi∪Vj)≤f(k,m) for all 1≤i≠j≤k, where e(Vi∪Vj) denotes the number of edges with both ends in Vi∪Vj? In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2017-01, Vol.50 (1), p.59-70
Hauptverfasser: Fan, Genghua, Hou, Jianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2002, Bollobás and Scott posed the following problem: for an integer k≥2 and a graph G of m edges, what is the smallest f(k, m) such that V(G) can be partitioned into V 1,…,Vk in which e(Vi∪Vj)≤f(k,m) for all 1≤i≠j≤k, where e(Vi∪Vj) denotes the number of edges with both ends in Vi∪Vj? In this paper, we solve this problem asymptotically by showing that f(k,m)≤m/(k−1)+o(m). We also show that V(G) can be partitioned into V1,…,Vk such that e(Vi∪Vj)≤4m/k2+4Δ/k+o(m) for 1≤i≠j≤k, where Δ denotes the maximum degree of G. This confirms a conjecture of Bollobás and Scott. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 59–70, 2017
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20642