Analytical and numerical studies on the nonlinear dynamic response of orthotropic membranes under impact load

Orthotropic membrane components and structures are widely used in building structures, instruments and meters, electronic engineering, space and aeronautics, etc., because of their light weights. However, the same lightweight combined with low stiffness make membranes prone to vibration under dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake Engineering and Engineering Vibration 2016-12, Vol.15 (4), p.657-672
Hauptverfasser: Liu, Changjiang, Zheng, Zhoulian, Yang, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orthotropic membrane components and structures are widely used in building structures, instruments and meters, electronic engineering, space and aeronautics, etc., because of their light weights. However, the same lightweight combined with low stiffness make membranes prone to vibration under dynamic loads, and in some cases the vibration may lead to structural failure. Herein, the undamped nonlinear vibration response of pretension rectangular orthotropic membrane structures subjected to impact loading is studied by analytical and numerical methods. The analytical solution is obtained by solving the governing equations by the Bubnov-Galerkin method and the Lindstedt-Poincare perturbation method. Numerical analysis has also been carried out based on the same theoretical model. The analytical and numerical results have been compared and analyzed, and the influence of various model parameters on membrane vibration discussed. The results obtained herein provide some theoretical basis for the vibration control and dynamic design of orthotropic membrane components and structures.
ISSN:1671-3664
1993-503X
DOI:10.1007/s11803-016-0356-7