Extended shift-splitting preconditioners for saddle point problems
In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2017-03, Vol.313, p.70-81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | |
container_start_page | 70 |
container_title | Journal of computational and applied mathematics |
container_volume | 313 |
creator | Zheng, Qingqing Lu, Linzhang |
description | In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES. |
doi_str_mv | 10.1016/j.cam.2016.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864554221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716304289</els_id><sourcerecordid>1864554221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</originalsourceid><addsrcrecordid>eNp9kLlOxDAQhi0EEsvCA9ClpEkYH4ljUcGKS1qJBmrLsSfgVY7F9iJ4e7xaaqqZ4vvn-Ai5pFBRoM31prJmrFhuK1AVQHtEFrSVqqRStsdkAVzKEgSTp-Qsxg0ANIqKBbm7_044OXRF_PB9KuN28Cn56b3YBrTz5Hzy84QhFv0cimicG7DYzn5KGZi7Acd4Tk56M0S8-KtL8vZw_7p6Ktcvj8-r23VpOYdUynyb4S3wRkhjZavQ1k3X8ho62jPbKWiwl50QCrresVohq1lDuRNG1gIoX5Krw9y8-HOHMenRR4vDYCacd1HTthF1LRjbo_SA2jDHGLDX2-BHE340Bb33pTc6-9J7XxqUzr5y5uaQwfzDl8ego_U4WXQ-m0jazf6f9C-JQnKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864554221</pqid></control><display><type>article</type><title>Extended shift-splitting preconditioners for saddle point problems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Zheng, Qingqing ; Lu, Linzhang</creator><creatorcontrib>Zheng, Qingqing ; Lu, Linzhang</creatorcontrib><description>In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.09.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Applications of mathematics ; Convergence ; Convergence analysis ; Iterative methods ; Linear systems ; Mathematical analysis ; Matrices (mathematics) ; Matrix splitting ; Numerical experiments ; Preconditioner ; Saddle point problems ; Saddle points ; Spectra</subject><ispartof>Journal of computational and applied mathematics, 2017-03, Vol.313, p.70-81</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</citedby><cites>FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042716304289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zheng, Qingqing</creatorcontrib><creatorcontrib>Lu, Linzhang</creatorcontrib><title>Extended shift-splitting preconditioners for saddle point problems</title><title>Journal of computational and applied mathematics</title><description>In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.</description><subject>Applications of mathematics</subject><subject>Convergence</subject><subject>Convergence analysis</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix splitting</subject><subject>Numerical experiments</subject><subject>Preconditioner</subject><subject>Saddle point problems</subject><subject>Saddle points</subject><subject>Spectra</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOxDAQhi0EEsvCA9ClpEkYH4ljUcGKS1qJBmrLsSfgVY7F9iJ4e7xaaqqZ4vvn-Ai5pFBRoM31prJmrFhuK1AVQHtEFrSVqqRStsdkAVzKEgSTp-Qsxg0ANIqKBbm7_044OXRF_PB9KuN28Cn56b3YBrTz5Hzy84QhFv0cimicG7DYzn5KGZi7Acd4Tk56M0S8-KtL8vZw_7p6Ktcvj8-r23VpOYdUynyb4S3wRkhjZavQ1k3X8ho62jPbKWiwl50QCrresVohq1lDuRNG1gIoX5Krw9y8-HOHMenRR4vDYCacd1HTthF1LRjbo_SA2jDHGLDX2-BHE340Bb33pTc6-9J7XxqUzr5y5uaQwfzDl8ego_U4WXQ-m0jazf6f9C-JQnKM</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Zheng, Qingqing</creator><creator>Lu, Linzhang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170315</creationdate><title>Extended shift-splitting preconditioners for saddle point problems</title><author>Zheng, Qingqing ; Lu, Linzhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of mathematics</topic><topic>Convergence</topic><topic>Convergence analysis</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix splitting</topic><topic>Numerical experiments</topic><topic>Preconditioner</topic><topic>Saddle point problems</topic><topic>Saddle points</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qingqing</creatorcontrib><creatorcontrib>Lu, Linzhang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Qingqing</au><au>Lu, Linzhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended shift-splitting preconditioners for saddle point problems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>313</volume><spage>70</spage><epage>81</epage><pages>70-81</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.09.008</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2017-03, Vol.313, p.70-81 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864554221 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Applications of mathematics Convergence Convergence analysis Iterative methods Linear systems Mathematical analysis Matrices (mathematics) Matrix splitting Numerical experiments Preconditioner Saddle point problems Saddle points Spectra |
title | Extended shift-splitting preconditioners for saddle point problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20shift-splitting%20preconditioners%20for%20saddle%20point%20problems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Zheng,%20Qingqing&rft.date=2017-03-15&rft.volume=313&rft.spage=70&rft.epage=81&rft.pages=70-81&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.09.008&rft_dat=%3Cproquest_cross%3E1864554221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864554221&rft_id=info:pmid/&rft_els_id=S0377042716304289&rfr_iscdi=true |