Extended shift-splitting preconditioners for saddle point problems

In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-03, Vol.313, p.70-81
Hauptverfasser: Zheng, Qingqing, Lu, Linzhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue
container_start_page 70
container_title Journal of computational and applied mathematics
container_volume 313
creator Zheng, Qingqing
Lu, Linzhang
description In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.
doi_str_mv 10.1016/j.cam.2016.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864554221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716304289</els_id><sourcerecordid>1864554221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</originalsourceid><addsrcrecordid>eNp9kLlOxDAQhi0EEsvCA9ClpEkYH4ljUcGKS1qJBmrLsSfgVY7F9iJ4e7xaaqqZ4vvn-Ai5pFBRoM31prJmrFhuK1AVQHtEFrSVqqRStsdkAVzKEgSTp-Qsxg0ANIqKBbm7_044OXRF_PB9KuN28Cn56b3YBrTz5Hzy84QhFv0cimicG7DYzn5KGZi7Acd4Tk56M0S8-KtL8vZw_7p6Ktcvj8-r23VpOYdUynyb4S3wRkhjZavQ1k3X8ho62jPbKWiwl50QCrresVohq1lDuRNG1gIoX5Krw9y8-HOHMenRR4vDYCacd1HTthF1LRjbo_SA2jDHGLDX2-BHE340Bb33pTc6-9J7XxqUzr5y5uaQwfzDl8ego_U4WXQ-m0jazf6f9C-JQnKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864554221</pqid></control><display><type>article</type><title>Extended shift-splitting preconditioners for saddle point problems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Zheng, Qingqing ; Lu, Linzhang</creator><creatorcontrib>Zheng, Qingqing ; Lu, Linzhang</creatorcontrib><description>In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.09.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Applications of mathematics ; Convergence ; Convergence analysis ; Iterative methods ; Linear systems ; Mathematical analysis ; Matrices (mathematics) ; Matrix splitting ; Numerical experiments ; Preconditioner ; Saddle point problems ; Saddle points ; Spectra</subject><ispartof>Journal of computational and applied mathematics, 2017-03, Vol.313, p.70-81</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</citedby><cites>FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042716304289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zheng, Qingqing</creatorcontrib><creatorcontrib>Lu, Linzhang</creatorcontrib><title>Extended shift-splitting preconditioners for saddle point problems</title><title>Journal of computational and applied mathematics</title><description>In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.</description><subject>Applications of mathematics</subject><subject>Convergence</subject><subject>Convergence analysis</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix splitting</subject><subject>Numerical experiments</subject><subject>Preconditioner</subject><subject>Saddle point problems</subject><subject>Saddle points</subject><subject>Spectra</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOxDAQhi0EEsvCA9ClpEkYH4ljUcGKS1qJBmrLsSfgVY7F9iJ4e7xaaqqZ4vvn-Ai5pFBRoM31prJmrFhuK1AVQHtEFrSVqqRStsdkAVzKEgSTp-Qsxg0ANIqKBbm7_044OXRF_PB9KuN28Cn56b3YBrTz5Hzy84QhFv0cimicG7DYzn5KGZi7Acd4Tk56M0S8-KtL8vZw_7p6Ktcvj8-r23VpOYdUynyb4S3wRkhjZavQ1k3X8ho62jPbKWiwl50QCrresVohq1lDuRNG1gIoX5Krw9y8-HOHMenRR4vDYCacd1HTthF1LRjbo_SA2jDHGLDX2-BHE340Bb33pTc6-9J7XxqUzr5y5uaQwfzDl8ego_U4WXQ-m0jazf6f9C-JQnKM</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Zheng, Qingqing</creator><creator>Lu, Linzhang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170315</creationdate><title>Extended shift-splitting preconditioners for saddle point problems</title><author>Zheng, Qingqing ; Lu, Linzhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7016a3803647ac789ec56b8350b1f2cb906ef7b4490bfd259e252613d4a754013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of mathematics</topic><topic>Convergence</topic><topic>Convergence analysis</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix splitting</topic><topic>Numerical experiments</topic><topic>Preconditioner</topic><topic>Saddle point problems</topic><topic>Saddle points</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qingqing</creatorcontrib><creatorcontrib>Lu, Linzhang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Qingqing</au><au>Lu, Linzhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended shift-splitting preconditioners for saddle point problems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>313</volume><spage>70</spage><epage>81</epage><pages>70-81</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.09.008</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2017-03, Vol.313, p.70-81
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1864554221
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Applications of mathematics
Convergence
Convergence analysis
Iterative methods
Linear systems
Mathematical analysis
Matrices (mathematics)
Matrix splitting
Numerical experiments
Preconditioner
Saddle point problems
Saddle points
Spectra
title Extended shift-splitting preconditioners for saddle point problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20shift-splitting%20preconditioners%20for%20saddle%20point%20problems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Zheng,%20Qingqing&rft.date=2017-03-15&rft.volume=313&rft.spage=70&rft.epage=81&rft.pages=70-81&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.09.008&rft_dat=%3Cproquest_cross%3E1864554221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864554221&rft_id=info:pmid/&rft_els_id=S0377042716304289&rfr_iscdi=true