Extended shift-splitting preconditioners for saddle point problems

In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-03, Vol.313, p.70-81
Hauptverfasser: Zheng, Qingqing, Lu, Linzhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider to solve the linear systems of the saddle point problems by preconditioned Krylov subspace methods. The preconditioners are based on a special splitting of the saddle point matrix. The convergence theory of this class of the extended shift-splitting preconditioned iteration methods is established. The spectral properties of the preconditioned matrices are analyzed. Numerical implementations show that the resulting preconditioners lead to fast convergence when they are used to precondition Krylov subspace iteration methods such as GMRES.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2016.09.008