Effect of Previous Grain Size on Recystallization Texture and the Formability of the Nb Ferritic Stainless Steel
The ferritic stainless steels are materials used in several segments due to the excellent combination of mechanical properties and corrosion resistance. The mechanical properties of these alloys are strongly dependent on the microstructural characteristics and crystallography texture. The aim of thi...
Gespeichert in:
Veröffentlicht in: | Materials Science Forum 2016-11, Vol.879, p.1594-1599 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ferritic stainless steels are materials used in several segments due to the excellent combination of mechanical properties and corrosion resistance. The mechanical properties of these alloys are strongly dependent on the microstructural characteristics and crystallography texture. The aim of this experimental study is to investigate the roles of the grain size of the hot rolled sample on the development of the microstructure, texture and formability of ferritic stainless steel. The main elements of chemical composition of the steel under investigation were 16.0 %Cr, 0.021 %C, 0.024 %N and 0.35 %Nb. Coarse and fine grains samples were cold rolled up to 90% thickness reduction and annealed at 880°C with soaking time of the 24 s. The texture measurements were performed by Electron Backscattered Diffraction (EBSD) in the longitudinal section. The formability was evaluated by the R-value and planar anisotropy (Δr) in tensile tests. The final microstructure after annealed was more homogenous for smaller initial grain size sample. This condition was favorable to develop γ-fiber, with sharpness intensity in 111121 components. The highest R-value and smallest planar anisotropy was obtained for a {111}/{001} ratio around 5.37. On the other hand, coarser initial grain size sample had showed a heterogeneous microstructure and texture, performing badly in mechanical tests (anisotropy). |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.879.1594 |