Process Parameter Optimization of Fused Deposition Modeling for Helical Surfaces Using Grey Relational Analysis

Fused Deposition Modeling (FDM), a fast growing rapid prototyping technology, is a process for developing physical objects by adding fused layers of materials according to a three dimensional CAD geometry. FDM can be used to produce parts with complex geometries. Hence it gains distinct advantages i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science Forum 2016-11, Vol.879, p.861-866
Hauptverfasser: Anusree, T.G., Anjan, R.Nair, John, T.D., Sivadasan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fused Deposition Modeling (FDM), a fast growing rapid prototyping technology, is a process for developing physical objects by adding fused layers of materials according to a three dimensional CAD geometry. FDM can be used to produce parts with complex geometries. Hence it gains distinct advantages in industries. One of the major drawbacks of FDM is the reduced part quality measured in terms of dimensional accuracy, surface finish and mechanical characteristics. The major share of research literature related to the field of FDM process parameter optimization focuses on flat and circular surfaces, while only a few studies are available on helical surfaces. This paper is based on a close study conducted to understand the effect of four parameters, namely, layer thickness, raster width, print speed and support material density on dimensional accuracy, tensile strength and surface finish of FDM processed helical surfaces. The experiments were designed by taking three levels of each process parameter selected. Optimum parameter level for improving dimensional accuracy, tensile strength and surface finish simultaneously were obtained by Grey Relational Analysis. The main effect plots were also analyzed.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.879.861