An Efficient Method to Generate Element Stiffness Matrix of Quadrilateral Elements in Closed Form on Application of Vehicle Analysis
This paper presents about generating elemental stiffness matrix for quadrilateral elements in closed form solution method for application on vehicle analysis which is convenient and simple as long as Jacobian is matrix of constant. The interpolation function of the field variable to be found can int...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2016-09, Vol.852 (Mechanical Engineering Design), p.582-587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents about generating elemental stiffness matrix for quadrilateral elements in closed form solution method for application on vehicle analysis which is convenient and simple as long as Jacobian is matrix of constant. The interpolation function of the field variable to be found can integrate explicitly once for all, which gives the constant universal matrices A, B and C. Therefore, stiffness matrix is no longer integration of the given functional, it is simple calculation of universal matrices and local co-ordinates of the element. So time taken for generation of element stiffness can be reduced considerably compared to Gauss numerical integration method. For effective use of quadrilateral elements hybrid grid generation is recommended that contains all interior element edges are parallel to each other (rectangle or square elements) and outer boundary elements are quadrilaterals with distortion. So in the Proposed method, the closed form and Gauss numerical method is used explicitly for interior elements and outer elements respectively. The time efficiency of proposed method is compared with conventional Gauss quadrature that is used for entire domain. It is found that the proposed method is much efficient than Gauss Quadrature. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.852.582 |