Multi-view TSK Fuzzy System via Collaborative Learning

Conventional fuzzy system modeling methods essentially belong to the single-view learning modality. In multi-view-oriented data scenarios, they can only cope with each view separately, which is prone to incurring their unsatisfactory generalization performance. In response to such problem, the fuzzy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dian zi yu xin xi xue bao = Journal of electronics & information technology 2016-08, Vol.38 (8), p.2054-2061
Hauptverfasser: Cheng, Yang, Gu, Xiaoqing, Jiang, Yizhang, Hang, Wenlong, Qian, Pengjiang, Wang, Shitong
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional fuzzy system modeling methods essentially belong to the single-view learning modality. In multi-view-oriented data scenarios, they can only cope with each view separately, which is prone to incurring their unsatisfactory generalization performance. In response to such problem, the fuzzy system modeling method with the ability of multi-view learning is pursued. To this end, based on the classic L2 norm Takagi-Sugeno-Kang (TSK) fuzzy system, by means of the collaborative learning items qualified for multi-view learning, the core Multi-View TSK Fuzzy System (MV-TSK-FS) modeling method is presented. MV-TSK-FS can not only effectively utilize the independent components composed of the characteristics affiliated to each view, but also take full advantage of the potential information occurred by the interrelated effects among views, which eventually facilitates its relatively strong generalization ability. The experimental results performed on both synthetic and real-life datasets indicate that, compare
ISSN:1009-5896
DOI:10.11999/JEIT151209