Towards ab initio extremely metal-poor stars

Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-12, Vol.463 (3), p.3354-3354
Hauptverfasser: Ritter, Jeremy S, Safranek-Shrader, Chalence, Milosavljevic, Milo, Bromm, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 ... Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 10 super( 51) erg and injected an ample metal mass of 6 ..., the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only ..., and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential. (ProQuest: ... denotes formulae/symbols omitted.)
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw2220