Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy
A bstract We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving N supersymmetries in dimensions D ≥ 4 correspond precisely to integrable generalised G N structures, where G N is the generalised structure group defined by the Killing spinors. In other words, they are t...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-11, Vol.2016 (11), p.1-34, Article 63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving
N
supersymmetries in dimensions
D
≥ 4 correspond precisely to integrable generalised
G
N
structures, where
G
N
is the generalised structure group defined by the Killing spinors. In other words, they are the analogues of special holonomy manifolds in
E
d
d
×
ℝ
+
generalised geometry. In establishing this result, we introduce the Kosmann-Dorfman bracket, a generalisation of Kosmann’s Lie derivative of spinors. This allows us to write down the internal sector of the Killing superalgebra, which takes a rather simple form and whose closure is the key step in proving the main result. In addition, we find that the eleven-dimensional Killing superalgebra of these backgrounds is necessarily the supertranslational part of the
N
-extended super-Poincaré algebra. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP11(2016)063 |