Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy

A bstract We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving N supersymmetries in dimensions D ≥ 4 correspond precisely to integrable generalised G N structures, where G N is the generalised structure group defined by the Killing spinors. In other words, they are t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-11, Vol.2016 (11), p.1-34, Article 63
Hauptverfasser: Coimbra, André, Strickland-Constable, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving N supersymmetries in dimensions D ≥ 4 correspond precisely to integrable generalised G N structures, where G N is the generalised structure group defined by the Killing spinors. In other words, they are the analogues of special holonomy manifolds in E d d × ℝ + generalised geometry. In establishing this result, we introduce the Kosmann-Dorfman bracket, a generalisation of Kosmann’s Lie derivative of spinors. This allows us to write down the internal sector of the Killing superalgebra, which takes a rather simple form and whose closure is the key step in proving the main result. In addition, we find that the eleven-dimensional Killing superalgebra of these backgrounds is necessarily the supertranslational part of the N -extended super-Poincaré algebra.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP11(2016)063