Testing parametric models in linear-directional regression
This paper presents a goodness-of-fit test for parametric regression models with scalar response and directional predictor, that is, a vector on a sphere of arbitrary dimension. The testing procedure is based on the weighted squared distance between a smooth and a parametric regression estimator, wh...
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of statistics 2016-12, Vol.43 (4), p.1178-1191 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a goodness-of-fit test for parametric regression models with scalar response and directional predictor, that is, a vector on a sphere of arbitrary dimension. The testing procedure is based on the weighted squared distance between a smooth and a parametric regression estimator, where the smooth regression estimator is obtained by a projected local approach. Asymptotic behaviour of the test statistic under the null hypothesis and local alternatives is provided, jointly with a consistent bootstrap algorithm for application in practice. A simulation study illustrates the performance of the test in finite samples. The procedure is applied to test a linear model in text mining. |
---|---|
ISSN: | 0303-6898 1467-9469 |
DOI: | 10.1111/sjos.12236 |