Testing parametric models in linear-directional regression

This paper presents a goodness-of-fit test for parametric regression models with scalar response and directional predictor, that is, a vector on a sphere of arbitrary dimension. The testing procedure is based on the weighted squared distance between a smooth and a parametric regression estimator, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2016-12, Vol.43 (4), p.1178-1191
Hauptverfasser: GarcÍa-Portugués, Eduardo, Van Keilegom, Ingrid, Crujeiras and, Rosa M., González-Manteiga, Wenceslao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a goodness-of-fit test for parametric regression models with scalar response and directional predictor, that is, a vector on a sphere of arbitrary dimension. The testing procedure is based on the weighted squared distance between a smooth and a parametric regression estimator, where the smooth regression estimator is obtained by a projected local approach. Asymptotic behaviour of the test statistic under the null hypothesis and local alternatives is provided, jointly with a consistent bootstrap algorithm for application in practice. A simulation study illustrates the performance of the test in finite samples. The procedure is applied to test a linear model in text mining.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12236