Robust Water Level Control of the U-Tube Steam Generator
AbstractIn this paper, a new practical robust water level control system for the U-tube steam generator (UTSG) using the quantitative feedback theory (QFT) is proposed. The steam generator is a nonlinear uncertain plant. However, the steam generator behaves as a linear uncertain and nonminimum phase...
Gespeichert in:
Veröffentlicht in: | Journal of energy engineering 2013-09, Vol.139 (3), p.161-168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AbstractIn this paper, a new practical robust water level control system for the U-tube steam generator (UTSG) using the quantitative feedback theory (QFT) is proposed. The steam generator is a nonlinear uncertain plant. However, the steam generator behaves as a linear uncertain and nonminimum phase plant at its different operating points, which makes its control a challenging problem. The control problem is to design controllers such that the closed-loop plant satisfies the robust stability, disturbance rejection, and robust tracking specifications that are derived from a desired steam generator performance. In the QFT design methodology, these specifications are satisfied by generating the plant templates, the composite bounds, and a nominal plant loop shaping procedure to satisfy these bounds. Simulation results reveal that the designed QFT water level controllers will ensure all the designers’ closed-loop specifications. Also, comparison results are provided that show the effectiveness of the robust QFT controllers with respect to the previously employed internal model-based controller. |
---|---|
ISSN: | 0733-9402 1943-7897 |
DOI: | 10.1061/(ASCE)EY.1943-7897.0000107 |