Robust Water Level Control of the U-Tube Steam Generator

AbstractIn this paper, a new practical robust water level control system for the U-tube steam generator (UTSG) using the quantitative feedback theory (QFT) is proposed. The steam generator is a nonlinear uncertain plant. However, the steam generator behaves as a linear uncertain and nonminimum phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy engineering 2013-09, Vol.139 (3), p.161-168
Hauptverfasser: Safarzadeh, O, Khaki-Sedigh, A, Shirani, A. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractIn this paper, a new practical robust water level control system for the U-tube steam generator (UTSG) using the quantitative feedback theory (QFT) is proposed. The steam generator is a nonlinear uncertain plant. However, the steam generator behaves as a linear uncertain and nonminimum phase plant at its different operating points, which makes its control a challenging problem. The control problem is to design controllers such that the closed-loop plant satisfies the robust stability, disturbance rejection, and robust tracking specifications that are derived from a desired steam generator performance. In the QFT design methodology, these specifications are satisfied by generating the plant templates, the composite bounds, and a nominal plant loop shaping procedure to satisfy these bounds. Simulation results reveal that the designed QFT water level controllers will ensure all the designers’ closed-loop specifications. Also, comparison results are provided that show the effectiveness of the robust QFT controllers with respect to the previously employed internal model-based controller.
ISSN:0733-9402
1943-7897
DOI:10.1061/(ASCE)EY.1943-7897.0000107