Crystallographic facet-dependent stress responses by polyhedral lead sulfide nanocrystals and the potential "safe-by-design" approach

The particular physicochemical properties of nanomaterials are able to elicit unique biological responses. The property activity relationship is usually established for in-depth understanding of toxicity mechanisms and designing safer nanomaterials. In this study, the toxic role of specific crystall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2016-12, Vol.9 (12), p.3812-3827
Hauptverfasser: Chang, Yun, Li, Kai, Feng, Yanlin, Liu, Ning, Cheng, Yan, Sun, Xiujuan, Feng, Yuqing, Li, Xi, Wu, Zhijian, Zhang, Haiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The particular physicochemical properties of nanomaterials are able to elicit unique biological responses. The property activity relationship is usually established for in-depth understanding of toxicity mechanisms and designing safer nanomaterials. In this study, the toxic role of specific crystallographic facets of a series of polyhedral lead sulfide (PbS) nanocrystals, including truncated octahedrons, cuboctahedrons, truncated cubes, and cubes, was investigated in human bronchial epithelial cells (BEAS-2B) and murine alveolar macrophages (RAW 264.7) cells./100} facets were found capable of triggering facet-dependent cellular oxidative stress and heavy metal stress responses, such as glutathione depletion, lipid peroxidation, reactive oxygen species (ROS) production, heme oxygenase-1 (HO-1) and metallothionein (MT) expression, and mitochondrial dysfunction, while {111} facets remained inert under biological conditions. The {100}-facet-dependent toxicity was ascribed to {100}-facet-dependent lead dissolution, while the low lead dissolution of {111} facets was due to the strong protection afforded by poly(vinyl pyrrolidone) during synthesis. Based on this facet-toxicity relationship, a "safe-by-design" strategy was designed to prevent lead dissolution from {100} facets through the formation of atomically thin lead-chloride adlayers, resulting in safer polyhedral PbS nanocrystals.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-016-1251-2