A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2

An energy efficient and economically viable bimetallic heterogeneous catalyst system composed of Co and Zn as active centers and 2-methylimidazole as a linker has been synthesized in water at room temperature. The synthesized material (CZ-ZIF) possesses a sodalite topology, similar to the parent mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2016-01, Vol.18 (23), p.6349-6356
Hauptverfasser: Kuruppathparambil, Roshith Roshan, Babu, Robin, Jeong, Hye Min, Hwang, Gyu-Young, Jeong, Gyeong Seon, Kim, Moon-Il, Kim, Dong-Woo, Park, Dae-Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An energy efficient and economically viable bimetallic heterogeneous catalyst system composed of Co and Zn as active centers and 2-methylimidazole as a linker has been synthesized in water at room temperature. The synthesized material (CZ-ZIF) possesses a sodalite topology, similar to the parent materials, ZIF-8 and ZIF-67, with a high surface area of >1400 m2 g-1. The Zn and Co metal ions were shown to occupy equivalent sites throughout the framework in similar proportions, as confirmed by inductively coupled plasma atomic emission spectroscopy and energy dispersive X-ray spectroscopy techniques. CZ-ZIF rendered a high catalytic conversion of epoxides to five-membered cyclic carbonates using CO2 as the C1 source under solvent- and co-catalyst-free conditions with excellent selectivity and manifested better catalytic abilities than ZIF-67 and enhanced framework stability compared to ZIF-8. Furthermore, CZ-ZIF exhibited catalytic activity even at room temperature in the presence of a co-catalyst, and was reusable over a minimum of five cycles with no noticeable decrease in activity. A plausible mechanism for CZ-ZIF catalyzed solvent- and co-catalyst-free epoxide-CO2 cycloaddition has been proposed.
ISSN:1463-9262
1463-9270
DOI:10.1039/c6gc01614f