Monte Carlo Simulation of the Torsional Strength due to Concrete Compression of Reinforced Concrete Element

The aim of the work was to assess the safety margin of reinforced concrete element of rectangular cross-sections subjected to torsion. In the performed analyses two models of torsional resistance based on concrete compressive strength was taken into account. Assessment was performed with use of Mont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-11, Vol.797 (Science and Engineering 2015), p.27-34
Hauptverfasser: Wiliński, Piotr, Jaskulski, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the work was to assess the safety margin of reinforced concrete element of rectangular cross-sections subjected to torsion. In the performed analyses two models of torsional resistance based on concrete compressive strength was taken into account. Assessment was performed with use of Monte Carlo method. Utilized models of shear resistance were taken from formerly used Polish standards: PN-84/B-03264, PN-B-03264:2002 and the actual Polish standard EN-1992-1-1:2004. From the same standards necessary assumptions related with the models were taken. The safety margin and influence of the differences in assumptions on the obtained results were analyzed. The selected models was also evaluated in terms of their “sensitivity” to changes of basic parameters of distribution functions of selected random variables. Results showed that average torsional resistance differs of about 50% times depending of assumed model. The reliability level, measured with the partial reliability exponent ΔR, differs of 10% if different models are concerned but the differences are much higher (up to 5 times, when the standard deviation of concrete compressive strength distribution changes).
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.797.27