High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology
To obtain high strength for near-rapid solidification (NRS) magnesium alloys, the microstructures and mechanical properties of the Mg94Zn2.4Y3.6 (at%) alloys, which were prepared by ordinary and injection copper mold casting (ICMC), respectively, were investigated comprehensively. It has been shown...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-01, Vol.679, p.476-483 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To obtain high strength for near-rapid solidification (NRS) magnesium alloys, the microstructures and mechanical properties of the Mg94Zn2.4Y3.6 (at%) alloys, which were prepared by ordinary and injection copper mold casting (ICMC), respectively, were investigated comprehensively. It has been shown that the microstructure of ICMC Mg94Zn2.4Y3.6 alloy possesses the far-away-from equilibrium feature of NRS materials, which is composed of refined α-Mg grains with supersaturated Y and Zn, fine network-like long-period stacking-order (LPSO) phases and a few of Mg24Y5 particles. The interface between LPSO phase and α-Mg matrix is semi-coherent with the orientation relationship of [0002]α//[112¯0]LPSO, (101¯0)α//(0002)LPSO. The ICMC alloy exhibits enhanced mechanical properties with the ultimate tensile strength and elongation up to 355MPa and 7% at room temperature, respectively, and with the ultimate tensile strength of 302MPa at 150°C. It can be concluded that the strengthening mechanisms of this ICMC alloy are attributed to the grain refinement, the solid solution effect, the secondary phase strengthening and the crystalline boundaries strengthening. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2016.10.071 |