Controlled peel testing of a model tissue for diseased aorta

Abstract In this study, we examine the effect of collagenase, elastase and glutaraldehyde treatments on the response of porcine aorta to controlled peel testing. Specifically, the effects on the tissue׳s resistance to dissection, as quantified by critical energy release rate, are investigated. We fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2016-11, Vol.49 (15), p.3667-3675
Hauptverfasser: Noble, Christopher, Smulders, Nicole, Lewis, Roger, Carré, Matt J, Franklin, Steve E, MacNeil, Sheila, Taylor, Zeike A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract In this study, we examine the effect of collagenase, elastase and glutaraldehyde treatments on the response of porcine aorta to controlled peel testing. Specifically, the effects on the tissue׳s resistance to dissection, as quantified by critical energy release rate, are investigated. We further explore the utility of these treatments in creating model tissues whose properties emulate those of certain diseased tissues. Such model tissues would find application in, for example, development and physical testing of new endovascular devices. Controlled peel testing of fresh and treated aortic specimens was performed with a tensile testing apparatus. The resulting reaction force profiles and critical energy release rates were compared across sample classes. It was found that collagenase digestion significantly decreases resistance to peeling, elastase digestion has almost no effect, and glutaraldehyde significantly increases resistance. The implications of these findings for understanding mechanisms of disease-associated biomechanical changes, and for the creation of model tissues that emulate these changes are explored.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2016.09.040