A Noise-Filtered Under-Sampling Scheme for Imbalanced Classification

Under-sampling is a popular data preprocessing method in dealing with class imbalance problems, with the purposes of balancing datasets to achieve a high classification rate and avoiding the bias toward majority class examples. It always uses full minority data in a training dataset. However, some n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-12, Vol.47 (12), p.4263-4274
Hauptverfasser: Kang, Qi, Chen, XiaoShuang, Li, SiSi, Zhou, MengChu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under-sampling is a popular data preprocessing method in dealing with class imbalance problems, with the purposes of balancing datasets to achieve a high classification rate and avoiding the bias toward majority class examples. It always uses full minority data in a training dataset. However, some noisy minority examples may reduce the performance of classifiers. In this paper, a new under-sampling scheme is proposed by incorporating a noise filter before executing resampling. In order to verify the efficiency, this scheme is implemented based on four popular under-sampling methods, i.e., Undersampling + Adaboost, RUSBoost, UnderBagging, and EasyEnsemble through benchmarks and significance analysis. Furthermore, this paper also summarizes the relationship between algorithm performance and imbalanced ratio. Experimental results indicate that the proposed scheme can improve the original undersampling-based methods with significance in terms of three popular metrics for imbalanced classification, i.e., the area under the curve, F-measure, and G-mean.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2016.2606104