Determination of time-and size-dependent fine particle emission with varied oil heating in an experimental kitchen
Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP < 100 nm) and accumulation mode particles(A...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2017, Vol.51 (1), p.157-164 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP < 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m~3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m~3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm~3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/j.jes.2016.06.030 |