Basic Study for the Purpose of Developing a Quantitative 67Ga-SPECT Measurement Method

Purpose: 67Ga-single photon emission computed tomography (SPECT) images vary according to the imaging time and image display methods. The calculation of an index, such as the standardized uptake value used in positron emission tomography, from 67Ga-SPECT images would enable the accurate evaluation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Radiological Technology 2017, Vol.73(1), pp.12-19
Hauptverfasser: Nakanishi, Kensuke, Sakata, Reiki, Takaki, Akihiro, Nakasone, Yutaka, Kadota, Masataka, Ito, Shigeki
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: 67Ga-single photon emission computed tomography (SPECT) images vary according to the imaging time and image display methods. The calculation of an index, such as the standardized uptake value used in positron emission tomography, from 67Ga-SPECT images would enable the accurate evaluation of the region of accumulation. The purpose of this study was to elucidate the conversion formula, the lower detection limit (LDL), and recovery coefficient (RC) for quantifying the radiation concentration in the 67Ga accumulation site. Methods: After chronologically obtaining SPECT/CT images at a radiation concentration of 1.0–442.4 kBq/mL with 27 bottles (diameter: 48 mm, 100 mL), the radiation concentration conversion formula was calculated using the successive approximation reconstruction method. The conversion coefficient was then calculated from the relationship between the count rate and the radiation concentration, and the LDL was determined. To compensate for the partial volume effect, the recovery curve was calculated using the mean SPECT count for six bottles (diameter: 9, 18, 29, 38, 48, and 94 mm). Results: There was a linear relationship between the radiation concentration and the count rate with a good correlation (r=0.99). The LDL was 1.0 kBq/mL. The recovery curve reached a plateau at a diameter of at least 48 mm. Conclusion: The calculation of the absorbed dose index was possible using the radiation concentration conversion formula and the RC.
ISSN:0369-4305
1881-4883
DOI:10.6009/jjrt.2017_JSRT_73.1.12