Occurrence of norovirus in raw sewage – A systematic literature review and meta-analysis

Human noroviruses (NoV) are a leading cause of recreational waterborne illnesses and responsible for the majority of viral-associated gastrointestinal illnesses nationwide. We conducted a systematic literature review of published peer-reviewed publications to identify NoV density data in wastewater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2017-03, Vol.111, p.366-374
Hauptverfasser: Eftim, Sorina E., Hong, Tao, Soller, Jeffrey, Boehm, Alexandria, Warren, Isaac, Ichida, Audrey, Nappier, Sharon P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human noroviruses (NoV) are a leading cause of recreational waterborne illnesses and responsible for the majority of viral-associated gastrointestinal illnesses nationwide. We conducted a systematic literature review of published peer-reviewed publications to identify NoV density data in wastewater influent, and provided an approach for developing pathogen density distributions, using the NoV data. Literature review inclusion criteria included scope, study quality, and data availability. A non-parametric bootstrap statistical model was used to estimate the NoV distribution in wastewater influent. The approach used accounts for heterogeneity in study-specific distribution curves, sampling locations, and sampling season and provides a comprehensive representation of the data. Study results illustrate that pooling all of the available NoV data together in a meta-analysis provides a more comprehensive understanding of the technical literature than what could be appreciated from individual studies. The studies included in this analysis indicate a high density of NoV in wastewater influent (overall mean = 4.6 log10 genome copies (GC)/liter (L)), with a higher density of NoV genogroup (G) II (overall mean = 4.9 log10 GC/L) than for GI (overall mean = 4.4 log10 GC/L for GI). The bootstrapping approach was also used to account for differences in seasonal and geographical occurrences of NoV GI and GII. The methods presented are reproducible and can be used to develop QMRA-ready density distributions for other viral pathogens in wastewater influent, effluent, and ambient waters. To our knowledge, our results are the first to quantitatively characterize seasonal and geographic differences, which could be particularly useful for future risk assessments. •Systematic literature review and meta-analysis of NoV in raw wastewater is presented.•Studies conducted in 12 countries provided 850 NoV density data points.•NoV densities were significantly lower in North America and New Zealand compared to Europe and Asia.•Overall NoV densities were significantly higher in colder seasons.•NoV density distributions can inform future quantitative microbial risk assessment efforts.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2017.01.017