Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films

We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO3 films with systematically varying oxygen va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-02, Vol.17 (2), p.794-799
Hauptverfasser: Chandrasena, Ravini U, Yang, Weibing, Lei, Qingyu, Delgado-Jaime, Mario U, Wijesekara, Kanishka D, Golalikhani, Maryam, Davidson, Bruce A, Arenholz, Elke, Kobayashi, Keisuke, Kobata, Masaaki, de Groot, Frank M. F, Aschauer, Ulrich, Spaldin, Nicola A, Xi, Xiaoxing, Gray, Alexander X
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core–hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.6b03986