Three-dimensional finite element model to predict patterns of pterygomaxillary dysjunction during Le Fort I osteotomy
Abstract The aim of this study was to determine whether non-linear three-dimensional finite element analysis (3D-FEA) can be applied to simulate pterygomaxillary dysjunction during Le Fort I osteotomy (LFI) not involving a curved osteotome (LFI-non-COSep), and to predict potential changes in the fra...
Gespeichert in:
Veröffentlicht in: | International journal of oral and maxillofacial surgery 2017-05, Vol.46 (5), p.564-571 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The aim of this study was to determine whether non-linear three-dimensional finite element analysis (3D-FEA) can be applied to simulate pterygomaxillary dysjunction during Le Fort I osteotomy (LFI) not involving a curved osteotome (LFI-non-COSep), and to predict potential changes in the fracture pattern associated with extending the cutting line. Computed tomography (CT) image data (100 snapshots) after LFI were converted to 3D-CT images. 3D-FEA models were built using preoperative CT matrix data and used to simulate pterygomaxillary dysjunction. The pterygomaxillary dysjunction patterns predicted by the 3D-FEA models of pterygomaxillary dysjunction were classified into three categories and compared to the pterygomaxillary dysjunction patterns observed in the postoperative 3D-CT images. Extension of the cutting line was also simulated using the 3D-FEA models to predict the risk and position of pterygoid process fracture. The rate of agreement between the predicted pterygomaxillary dysjunction patterns and those observed in the postoperative 3D-CT images was 87.0% ( κ coefficient 0.79). The predicted incidence of pterygoid process fracture was higher for cutting lines that extended to the pterygomaxillary junction than for conventional cutting lines (odds ratio 4.75; P < 0.0001). 3D-FEA can be used to predict pterygomaxillary dysjunction patterns during LFI-non-COSep and provides useful information for selecting safer procedures during LFI-non-COSep. |
---|---|
ISSN: | 0901-5027 1399-0020 |
DOI: | 10.1016/j.ijom.2016.12.009 |