Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier

Highlights • Proposition of a new feature selection strategy in two steps called GARF. • Selection of relevant subset of features extracted from PET images and clinical data. • Proposition of a multiparametric fitness function depending on RF and AUC. • Excellent performances obtained in comparison...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2017-09, Vol.60, p.42-49
Hauptverfasser: Paul, Desbordes, Su, Ruan, Romain, Modzelewski, Sébastien, Vauclin, Pierre, Vera, Isabelle, Gardin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • Proposition of a new feature selection strategy in two steps called GARF. • Selection of relevant subset of features extracted from PET images and clinical data. • Proposition of a multiparametric fitness function depending on RF and AUC. • Excellent performances obtained in comparison to 3 other methods.
ISSN:0895-6111
1879-0771
DOI:10.1016/j.compmedimag.2016.12.002