Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier
Highlights • Proposition of a new feature selection strategy in two steps called GARF. • Selection of relevant subset of features extracted from PET images and clinical data. • Proposition of a multiparametric fitness function depending on RF and AUC. • Excellent performances obtained in comparison...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 2017-09, Vol.60, p.42-49 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights • Proposition of a new feature selection strategy in two steps called GARF. • Selection of relevant subset of features extracted from PET images and clinical data. • Proposition of a multiparametric fitness function depending on RF and AUC. • Excellent performances obtained in comparison to 3 other methods. |
---|---|
ISSN: | 0895-6111 1879-0771 |
DOI: | 10.1016/j.compmedimag.2016.12.002 |