Asymmetric Pentagonal Metal Meshes for Flexible Transparent Electrodes and Heaters

Metal meshes have emerged as an important class of flexible transparent electrodes. We report on the characteristics of a new class of asymmetric meshes, tiled using a recently discovered family of pentagons. Micron-scale meshes were fabricated on flexible polyethylene terephthalate substrates via o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-02, Vol.9 (5), p.4932-4940
Hauptverfasser: Lordan, Daniel, Burke, Micheal, Manning, Mary, Martin, Alfonso, Amann, Andreas, O’Connell, Dan, Murphy, Richard, Lyons, Colin, Quinn, Aidan J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal meshes have emerged as an important class of flexible transparent electrodes. We report on the characteristics of a new class of asymmetric meshes, tiled using a recently discovered family of pentagons. Micron-scale meshes were fabricated on flexible polyethylene terephthalate substrates via optical lithography, metal evaporation (Ti 10 nm, Pt 50 nm), and lift-off. Three different designs were assessed, each with the same tessellation pattern and line width (5 μm), but with different sizes of the fundamental pentagonal unit. Good mechanical stability was observed for both tensile strain and compressive strain. After 1000 bending cycles, devices subjected to tensile strain showed fractional resistance increases in the range of 8–17%, while devices subjected to compressive strain showed fractional resistance increases in the range of 0–7%. The performance of the pentagonal metal mesh devices as visible transparent heaters via Joule heating was also assessed. Rapid response times (∼15 s) at low bias voltage (≤5 V) and good thermal resistance characteristics (213–258 °C cm2/W) were found using measured thermal imaging data. Deicing of an ice-bearing glass coupon on top of the transparent heater was also successfully demonstrated.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b12995