miR424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the Notch signaling pathway

Aberrant expression of miRNAs exert the critical roles in carcinogenesis, including cervical cancer. Recent study corroborated the down-regulation of miR424-5p in uterine cervix adenocarcinoma. This research aimed to investigate the function and underlying mechanisms of miR424-5p in cervical cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2017-02, Vol.171, p.9-15
Hauptverfasser: Zhou, Yan, An, Qi, Guo, Rui-xia, Qiao, Yu-huan, Li, Liu-xia, Zhang, Xiao-yan, Zhao, Xian-lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aberrant expression of miRNAs exert the critical roles in carcinogenesis, including cervical cancer. Recent study corroborated the down-regulation of miR424-5p in uterine cervix adenocarcinoma. This research aimed to investigate the function and underlying mechanisms of miR424-5p in cervical cancer cell growth. Tissues samples were collected from patients with cervical cancer and healthy control. The expression levels of miR424-5p were determined by qRT-PCR. After transfection with miR424-5p mimics or inhibitor, cervical cancer cell proliferation and apoptosis were evaluated by WST-1 and flow cytometry assay, respectively. The underlying mechanism involved in aforementioned processes was also explored. Expression of miR424-5p was notably decreased in cervical cancer tissues and cells. Overexpression of miR424-5p restrained cell proliferation and promoted cell apoptosis, but with little function in miR424-5p inhibitor-treated groups. Furthermore, KDM5B was identified as a direct target of miR424-5p as the evidence that miR-424-5p inhibited KDM5B expression and luciferase activity of KDM5B 3′-UTR. Here, KDM5B elevation majorly reversed miR424-5p-triggered inhibition in cell proliferation and increase in cell apoptosis. Moreover, silencing KDM5B expression also restrained cell growth. Additionally, miR424-5p overexpression inhibited the expression of Notch1 and Notch2, which was obviously rescued after KDM5B up-regulation. Simultaneously, blocking KDM5B also attenuated the activation of Notch pathway. Importantly, treatment with Notch agonist Jagged1 antagonized miR424-5p-mediated suppression on cell growth. This research suggests that miR424-5p may act as a novel anti-oncogene in cervical cancer by blocking cell growth through targeting KDM5B-Notch pathway. Accordingly, our study will support a promising therapeutic strategy against cervical carcinoma.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2017.01.006