Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs

We assesses the overall performance of state-of-the-art atmospheric GCMs in simulating the climatological variations of summer monsoon rainfall over the Asian-Western Pacific region and the systematic errors that are common to a group of GCMs. The GCM data utilized are obtained from 10 GCM groups pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2002-08, Vol.19 (5-6), p.383-395
Hauptverfasser: I-S, Kang, Jin, K, Wang, B, K-M Lau, Shukla, J, Krishnamurthy, V, Schubert, S, Wailser, D, Stern, W, Kitoh, A, Meehl, G, Kanamitsu, M, Galin, V, Satyan, V, C-K, Park, Liu, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We assesses the overall performance of state-of-the-art atmospheric GCMs in simulating the climatological variations of summer monsoon rainfall over the Asian-Western Pacific region and the systematic errors that are common to a group of GCMs. The GCM data utilized are obtained from 10 GCM groups participated in the CLIVAR/Monsoon GCM Intercomparison Project. The model composite shows that the overall spatial pattern of summer monsoon rainfall is similar to the observed, although the western Pacific rainfall is relatively weak. For the simulated precipitation over the western Pacific, the models can be classified into two categories. The first category of models simulates the precipitation more confined to the equatorial region and weaker precipitation in the subtropical western Pacific compared to the observed. The second category of models simulates large precipitation in the subtropical western Pacific but the region is shifted to the north by 5-10 degree . None of the models realistically reproduce the observed Mei-yu rain band in the region from the East China Sea to the mid Pacific. Most of the models produce a rain band along the continental side of East Asia. The climatological variations of simulated summer rainfall are examined in terms of their amplitude and their principal EOF modes. All models simulate larger amplitudes of the climatological seasonal variation of Indian summer monsoon than the observed, though most models simulate smaller amplitudes in the western Pacific. The ten model composite produces four leading EOF modes over the Asian-western Pacific region, which are remarkably similar to the observed counterparts. The first and second eigenmodes, respectively, represent the smoothed seasonal march of broad-scale monsoon and the onsets of the Indian and East Asian summer monsoon. The third and fourth modes relate to the climatological intraseasonal oscillation (CISO). In contrast to the model composite, several models fail to reproduce the first principal mode, and most models do not reproduce the observed modes higher than the second. The CISO of precipitation is also examined over the Indian monsoon and the East Asia-western Pacific monsoon regions separately.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-002-0245-9