Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency
Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO2 assimilation (AN) during photosynthesis. Whether this reduction originates from limitations either to photoch...
Gespeichert in:
Veröffentlicht in: | Journal of plant physiology 2017-02, Vol.209, p.20-30 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO2 assimilation (AN) during photosynthesis. Whether this reduction originates from limitations either to photochemical energy conversion or biochemical CO2 fixation or from a limitation to CO2 diffusion through stomata and the leaf mesophyll is debated. In this study, limitations to photosynthetic carbon gain of sunflower (Helianthus annuus L.) under K deficiency and PEG- induced water deficit were quantified and their implications on plant- and leaf-scale WUE (WUEP, WUEL) were evaluated. Results show that neither maximum quantum use efficiency (Fv/Fm) nor in-vivo RubisCo activity were directly affected by K deficiency and that the observed impairment of AN was primarily due to decreased CO2 mesophyll conductance (gm). K deficiency additionally impaired leaf area development which, together with reduced AN, resulted in inhibition of plant growth and a reduction of WUEP. Contrastingly, WUEL was not affected by K supply which indicated no inhibition of stomatal control. PEG-stress further impeded AN by stomatal closure and resulted in enhanced WUEL and high oxidative stress. It can be concluded from this study that reduction of gm is a major response of leaves to K deficiency, possibly due to changes in leaf anatomy, which negatively affects AN and contributes to the typical symptoms like oxidative stress, growth inhibition and reduced WUEP. |
---|---|
ISSN: | 0176-1617 1618-1328 |
DOI: | 10.1016/j.jplph.2016.11.010 |