Rapid infectious disease identification by next-generation DNA sequencing

Currently, there is a critical need to rapidly identify infectious organisms in clinical samples. Next-Generation Sequencing (NGS) could surmount the deficiencies of culture-based methods; however, there are no standardized, automated programs to process NGS data. To address this deficiency, we deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiological methods 2017-07, Vol.138, p.12-19
Hauptverfasser: Ellis, Jeremy E., Missan, Dara S., Shabilla, Matthew, Martinez, Delyn, Fry, Stephen E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, there is a critical need to rapidly identify infectious organisms in clinical samples. Next-Generation Sequencing (NGS) could surmount the deficiencies of culture-based methods; however, there are no standardized, automated programs to process NGS data. To address this deficiency, we developed the Rapid Infectious Disease Identification (RIDI™) system. The system requires minimal guidance, which reduces operator errors. The system is compatible with the three major NGS platforms. It automatically interfaces with the sequencing system, detects their data format, configures the analysis type, applies appropriate quality control, and analyzes the results. Sequence information is characterized using both the NCBI database and RIDI™ specific databases. RIDI™ was designed to identify high probability sequence matches and more divergent matches that could represent different or novel species. We challenged the system using defined American Type Culture Collection (ATCC) reference standards of 27 species, both individually and in varying combinations. The system was able to rapidly detect known organisms in
ISSN:0167-7012
1872-8359
DOI:10.1016/j.mimet.2016.09.012