Soluble Dietary Fiber Ameliorates Radiation-Induced Intestinal Epithelial-to-Mesenchymal Transition and Fibrosis

Background: Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JPEN. Journal of parenteral and enteral nutrition 2017-11, Vol.41 (8), p.1399-1410
Hauptverfasser: Yang, Jianbo, Ding, Chao, Dai, Xujie, Lv, Tengfei, Xie, Tingbing, Zhang, Tenghui, Gao, Wen, Gong, Jianfeng, Zhu, Weiming, Li, Ning, Li, Jieshou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse model. Materials and Methods: Apple pectin (4% wt/wt in drinking water) was administered to wild-type and pVillin-Cre-EGFP transgenic mice with intestinal fibrosis induced by a single dose of abdominal irradiation of 10 Gy. The effects of pectin on intestinal EMT and fibrosis, gut microbiota, and short-chain fatty acid (SCFA) concentration were evaluated. Results: Intestinal fibrosis in late radiation enteropathy showed increased submucosal thickness and subepithelial collagen deposition. Enhanced green fluorescent protein (EGFP)+/vimentin+ and EGFP+/α–smooth muscle actin (SMA)+ coexpressing cells were most clearly observed at 2 weeks after irradiation and gradually decreased at 4 and 12 weeks. Pectin significantly attenuated the thickness of submucosa and collagen deposition at 12 weeks (24.3 vs 27.6 µm in the pectin + radiation-treated group compared with radiation-alone group, respectively, P < .05; 69.0% vs 57.1%, P < .001) and ameliorated EMT at 2 and 4 weeks. Pectin also modulated the intestinal microbiota composition and increased the luminal SCFA concentration. Conclusion: The soluble dietary fiber pectin protected the terminal ileum against radiation-induced fibrosis. This effect might be mediated by altered SCFA concentration in the intestinal lumen and reduced EMT in the ileal epithelium.
ISSN:0148-6071
1941-2444
DOI:10.1177/0148607116671101