High-Intensity Swimming Exercise Decreases Glutamate-Induced Nociception by Activation of G-Protein-Coupled Receptors Inhibiting Phosphorylated Protein Kinase A

Several studies in humans have reported that improved pain control is associated with exercise in a variety of painful conditions, including osteoarthritis, fibromyalgia, and neuropathic pain. Despite the growing amount of experimental data on physical exercise and nociception, the precise mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2017-09, Vol.54 (7), p.5620-5631
Hauptverfasser: Martins, Daniel F., Siteneski, Aline, Ludtke, Daniela D., Dal-Secco, Daniela, Santos, Adair R. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several studies in humans have reported that improved pain control is associated with exercise in a variety of painful conditions, including osteoarthritis, fibromyalgia, and neuropathic pain. Despite the growing amount of experimental data on physical exercise and nociception, the precise mechanisms through which high-intensity exercise reduces pain remain elusive. Since the glutamatergic system plays a major role in pain transmission, we firstly analyzed if physical exercise could be able to decrease glutamate-induced nociception through G-protein-coupled receptor (G-PCR) activation. The second purpose of this study was to examine the effect of exercising upon phosphorylation of protein kinase A (PKA) isoforms induced by intraplantar (i.pl.) glutamate injection in mice. Our results demonstrate that high-intensity swimming exercise decreases nociception induced by glutamate and that i.pl. or intrathecal injections of cannabinoid, opioid, and adenosine receptor antagonists, AM281, naloxone, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), respectively, prevent this effect. Furthermore, the peripheral A 1 and opioid receptors, but not CB 1 , are also involved in exercise’s effect. We also verified that glutamate injection increases levels of phosphorylated PKA (p-PKA). High-intensity swimming exercise significantly prevented p-PKA increase. The current data show the direct involvement of the glutamatergic system on the hyponociceptive effect of high-intensity swimming exercise as well as demonstrate that physical exercise can activate multiple intracellular pathways through G-PCR activation, which share the same endogenous mechanism, i.e., inhibition of p-PKA.
ISSN:0893-7648
1559-1182
DOI:10.1007/s12035-016-0095-9