Identification and expression profiling of pheromone biosynthesis activating neuropeptide in Chlumetia transversa (Walker)
Insect neuropeptides (NPs) in the pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family are actively involved in many essential endocrine functions. These peptides are potential targets in the search for novel insect control agents. This is the first report on the cloning and sequen...
Gespeichert in:
Veröffentlicht in: | Pesticide biochemistry and physiology 2017-01, Vol.135, p.89-96 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Insect neuropeptides (NPs) in the pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family are actively involved in many essential endocrine functions. These peptides are potential targets in the search for novel insect control agents. This is the first report on the cloning and sequence determination of Chlumetia transversa (Walker) PBAN (Ct-PBAN) using rapid amplification of cDNA ends. The open reading frame of Ct-PBAN was 588bp in length and encoded 195 amino acids, which were assembled into five putative neuropeptides (diapause hormone homolog, α-neuropeptide, β-neuropeptide, PBAN, and γ-neuropeptide). These peptides were amidated at C-terminus and shared the conserved pentapeptide motif FXPR (or K) L. Moreover, Ct-PBAN had high homology to PBANs in Helicoverpa zea (84.1%), Helicoverpa armigera (83.5%), Helicoverpa assulta (83%), and Heliothis virescens (82.6%). Phylogenetic analysis showed that Ct-PBAN was closely related to its orthologs in the family Noctuidae. In addition, real-time quantitative polymerase chain reaction assays showed that the expression of Ct-PBAN peaked in the female head and was also detected at high levels in 1-d-old adults. These results suggested that Ct-PBAN is associated with sex pheromone biosynthesis in female C. transversa and could be used for developing C. transversa control systems based on molecular techniques.
[Display omitted]
•A PBAN gene was first identified in Chlumetia transversa (Ct-PBAN).•Ct-PBAN was closely related to its orthologs in the family Noctuidae.•The highest expression of Ct-PBAN was observed in 1-d-old adults. |
---|---|
ISSN: | 0048-3575 1095-9939 |
DOI: | 10.1016/j.pestbp.2016.05.005 |