Syndromic Surveillance System for Korea-US Joint Biosurveillance Portal: Design and Lessons Learned

Driven by the growing importance of situational awareness of bioterrorism threats, the Republic of Korea (ROK) and the United States have constructed a joint military capability, called the Biosurveillance Portal (BSP), to enhance biosecurity. As one component of the BSP, we developed the Military A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health security 2016-05, Vol.14 (3), p.152-160
Hauptverfasser: Rhee, Chulwoo, Burkom, Howard, Yoon, Chang-Gyo, Stewart, Miles, Elbert, Yevgeniy, Katz, Aaron, Tak, Sangwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Driven by the growing importance of situational awareness of bioterrorism threats, the Republic of Korea (ROK) and the United States have constructed a joint military capability, called the Biosurveillance Portal (BSP), to enhance biosecurity. As one component of the BSP, we developed the Military Active Real-time Syndromic Surveillance (MARSS) system to detect and track natural and deliberate disease outbreaks. This article describes the ROK military health data infrastructure and explains how syndromic data are derived and made available to epidemiologists. Queries corresponding to 8 syndromes, based on published clinical effects of weaponized pathogens, were used to classify military hospital patient records to form aggregated daily syndromic counts. A set of ICD-10 codes for each syndrome was defined through literature review and expert panel discussion. A study set of time series of national daily counts for each syndrome was extracted from the Defense Medical Statistical Information System between January 1, 2011, and May 31, 2014. A stratified, adjusted cumulative summation algorithm was implemented for each syndrome group to signal alerts prompting investigation. The algorithm was developed by calculating sensitivity to sets of 1,000 artificial outbreak signals randomly injected in the dataset, with each signal injected in a separate trial. Queries and visualizations were adapted from the Suite for Automated Global bioSurveillance. Findings indicated that early warning of outbreaks affecting fewer than 50 patients will require analysis at subnational levels, especially for common syndrome groups. Developing MARSS to improve sensitivity will require modification of underlying syndromic diagnosis codes, engineering to coordinate alerts among subdivisions, and enhanced algorithms. The bioterrorist threat in the Korean peninsula mandates these efforts.
ISSN:2326-5094
2326-5108
DOI:10.1089/hs.2015.0067