Decoding the perception of endogenous pain from resting-state MEG

Decoding the neural representations of pain is essential to obtaining an objective assessment as well as an understanding of its underlying mechanisms. The complexities involved in the subjective experience of pain make it difficult to obtain a quantitative assessment from the induced spatiotemporal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2017-01, Vol.144 (Pt A), p.1-11
Hauptverfasser: Kuo, Po-Chih, Chen, Yi-Ti, Chen, Yong-Sheng, Chen, Li-Fen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decoding the neural representations of pain is essential to obtaining an objective assessment as well as an understanding of its underlying mechanisms. The complexities involved in the subjective experience of pain make it difficult to obtain a quantitative assessment from the induced spatiotemporal patterns of brain activity of high dimensionality. Most previous studies have investigated the perception of pain by analyzing the amplitude or spatial patterns in the response of the brain to external stimulation. This study investigated the decoding of endogenous pain perceptions according to resting-state magnetoencephalographic (MEG) recordings. In our experiments, we applied a beamforming method to calculate the brain activity for every brain region and examined temporal and spectral features of brain activity for predicting the intensity of perceived pain in patients with primary dysmenorrhea undergoing menstrual pain. Our results show that the asymmetric index of sample entropy in the precuneus and the sample entropy in the left posterior cingulate gyrus were the most informative characteristics associated with the perception of menstrual pain. The correlation coefficient (ρ=0.64, p
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2016.09.040