Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cells

Consumption of fruits and vegetables is generally regarded as beneficial to plasma lipid profile. The mechanism by which the plant foods induce desirable lipid changes remains unclear. SREBP-2 is crucial in cholesterol metabolism, and it is a major regulator of the cholesterol biosynthesis enzyme HM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2017-01, Vol.424 (1-2), p.163-172
Hauptverfasser: Tan, Yan Qin, Wong, Tsz Yan, Lin, Shu-mei, Leung, Lai K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consumption of fruits and vegetables is generally regarded as beneficial to plasma lipid profile. The mechanism by which the plant foods induce desirable lipid changes remains unclear. SREBP-2 is crucial in cholesterol metabolism, and it is a major regulator of the cholesterol biosynthesis enzyme HMGCR. Our lab has previously illustrated that apigenin and luteolin could attenuate the nuclear translocation of SREBP-2 through an AMPK-dependent pathway. In the present study, these two flavones were studied for their ability to deter the same in an AMPK-independent signaling route. The processing of SREBP-2 protein was promoted by phorbol 12-myristate 13-acetate (PMA) in the hepatic cells WRL and HepG2, and the increased processing was reversed by apigenin or luteolin co-administration. EMSA results demonstrated that the PMA-induced DNA-binding activity was weakened by the flavones. The increased amount of nuclear SREBP-2 in cells was attenuated by the flavonoid as shown by immunocytochemical imaging. Quantitative reverse transcriptase-polymerase chain reaction assay demonstrated that the transcription of HMGCR under both flavone treatments was reduced. However, apigenin appeared to be stronger than luteolin in restraining PMA-induced HMGCR mRNA expression. Since PMA is a diacylglycerol analog, these findings might have some physiological implications.
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-016-2851-6