PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK
PPP-RTK has the potential of benefiting enormously from the integration of multiple GNSS/RNSS systems. However, since unaccounted inter-system biases (ISBs) have a direct impact on the integer ambiguity resolution performance, the PPP-RTK network and user models need to be flexible enough to accommo...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2016-09, Vol.90 (9), p.837-851 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PPP-RTK has the potential of benefiting enormously from the integration of multiple GNSS/RNSS systems. However, since unaccounted inter-system biases (ISBs) have a direct impact on the integer ambiguity resolution performance, the PPP-RTK network and user models need to be flexible enough to accommodate the occurrence of system-specific receiver biases. In this contribution we present such undifferenced, multi-system PPP-RTK full-rank models for both network and users. By an application of
S
-system theory, the multi-system estimable parameters are presented, thereby identifying how each of the three PPP-RTK components are affected by the presence of the system-specific biases. As a result different scenarios are described of how these biases can be taken into account. To have users benefit the most, we propose the construction of an ISB look-up table. It allows users to search the table for a network receiver of their own type and select the corresponding ISBs, thus effectively realizing their own ISB-corrected user model. By applying such corrections, the user model is strengthened and the number of integer-estimable user ambiguities is maximized. |
---|---|
ISSN: | 0949-7714 1432-1394 |
DOI: | 10.1007/s00190-016-0914-9 |