Glucose starvation as a selective tool for the study of adaptive mutations in Saccharomyces cerevisiae

Mutations not only arise in proliferating cells but also in resting - thus non-replicating - cells. Such stationary-phase mutations may occasionally enable an escape from growth repression and e.g. contribute to cancerogenesis or development of drug resistance. The most widely used condition for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiological methods 2017-01, Vol.132, p.4-8
Hauptverfasser: Heidenreich, Erich, Steinboeck, Ferdinand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations not only arise in proliferating cells but also in resting - thus non-replicating - cells. Such stationary-phase mutations may occasionally enable an escape from growth repression and e.g. contribute to cancerogenesis or development of drug resistance. The most widely used condition for the study of such adaptive mutations in the eukaryotic model organism Saccharomyces cerevisiae is the starvation for a single amino acid. To overcome some limitations of this experimental setup we developed a new adaptive mutation assay that allows a screening for mutagenic processes during a more regular cell cycle arrest induced by the lack of a fermentable carbon source. We blocked one essential step of gluconeogenesis by inactivation of the FBP1 gene. This drives the cells into a cell cycle arrest when glucose is not available in the medium although a non-fermentable carbon source is present. As another component of the new mutation assay, we established a custom-designed test allele that contains a microsatellite sequence as a target for mutations. We demonstrated the feasibility and validity of this novel experimental setup by the observation and characterization of adaptive mutants. •A novel adaptive mutation assay has been developed.•Adaptive mutations also occur on a non-fermentable carbon source.•A custom-designed microsatellite sequence serves as an adaptive mutation hotspot.
ISSN:0167-7012
1872-8359
DOI:10.1016/j.mimet.2016.11.007