Gene Expression Profiling of H9c2 Cells Subjected to H2O2-Induced Apoptosis with/without AF-HF001
Heart failure represents a major health problem. The development of new drugs to treat this condition is essential. We previously discovered that AF-001 attenuates the cardiac defects caused by heart failure in zebrafish. In this paper, we report the identification of AF-HF001, an AF-001 derivative,...
Gespeichert in:
Veröffentlicht in: | Biological & pharmaceutical bulletin 2016/02/01, Vol.39(2), pp.207-214 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heart failure represents a major health problem. The development of new drugs to treat this condition is essential. We previously discovered that AF-001 attenuates the cardiac defects caused by heart failure in zebrafish. In this paper, we report the identification of AF-HF001, an AF-001 derivative, and its effects on live cardiomyocytes subjected to oxidative damage. The in vitro results demonstrated that AF-HF001 attenuates the production of reactive oxygen species (ROS) and the myocardial cell apoptosis. A DNA microarray was performed to broadly analyze gene expression after H2O2 treatment with or without AF-HF001. Hierarchical clustering analysis revealed that AF-HF001 modifies the expression of certain genes (Ndufs2, Ndufb6, Ndufb8, Ndufa13, Ndufs3, Ndufs5, TPM1, MYH14, RyR1, and TIMP4) related to ROS production, cardiac contractility and extracellular matrix remodeling. AF-HF001 ameliorates oxidative damage, which may be related to the mitogen-activated protein kinase (MAPK) family and the intrinsic mitochondrial pathway. Altogether, this study suggests that AF-HF001 exhibits potential as a clinical drug candidate for the treatment of heart failure. |
---|---|
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b15-00601 |