Biochemical and molecular responses to water stress in resurrection plants
A small group of angiosperms, known as resurrection plants, can tolerate extreme dehydration. They survive in arid environments because they are able to dehydrate, remain quiescent during long periods of drought, and then resurrect upon rehydration. Dehydration induces the expression of a large numb...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2004-06, Vol.121 (2), p.175-181 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A small group of angiosperms, known as resurrection plants, can tolerate extreme dehydration. They survive in arid environments because they are able to dehydrate, remain quiescent during long periods of drought, and then resurrect upon rehydration. Dehydration induces the expression of a large number of transcripts in resurrection plants. Gene products with a putative protective function such as LEA proteins have been identified; they are expressed at high levels in the cytoplasm or in chloroplasts upon dehydration and/or ABA treatment of vegetative tissue. An increase in sugar concentration is usually observed at the onset of desiccation in vegetative tissue of resurrection plants. These sugars may be effective in osmotic adjustment or they may stabilize membrane structures and proteins. Regulatory genes such as a protein translation initiation factor, homeodomain‐leucine zipper genes and a gene probably working as a regulatory RNA have been isolated and characterized. The knowledge of the biochemical and molecular responses that occur during the onset of drought may help to improve water stress tolerance in plants of agronomic importance. |
---|---|
ISSN: | 0031-9317 1399-3054 |
DOI: | 10.1111/j.1399-3054.2004.00321.x |